/* * This file is part of the libsigrokdecode project. * * Copyright (C) 2010 Uwe Hermann * Copyright (C) 2012 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "libsigrokdecode-internal.h" /* First, so we avoid a _POSIX_C_SOURCE warning. */ #include "libsigrokdecode.h" #include #include #include #include /** @cond PRIVATE */ extern SRD_PRIV GSList *sessions; static void srd_inst_join_decode_thread(struct srd_decoder_inst *di); static void srd_inst_reset_state(struct srd_decoder_inst *di); SRD_PRIV void oldpins_array_seed(struct srd_decoder_inst *di); SRD_PRIV void oldpins_array_free(struct srd_decoder_inst *di); /** @endcond */ /** * @file * * Decoder instance handling. */ /** * @defgroup grp_instances Decoder instances * * Decoder instance handling. * * @{ */ /** * Set one or more options in a decoder instance. * * Handled options are removed from the hash. * * @param di Decoder instance. * @param options A GHashTable of options to set. * * @return SRD_OK upon success, a (negative) error code otherwise. * * @since 0.1.0 */ SRD_API int srd_inst_option_set(struct srd_decoder_inst *di, GHashTable *options) { struct srd_decoder_option *sdo; PyObject *py_di_options, *py_optval; GVariant *value; GSList *l; double val_double; gint64 val_int; int ret; const char *val_str; PyGILState_STATE gstate; if (!di) { srd_err("Invalid decoder instance."); return SRD_ERR_ARG; } if (!options) { srd_err("Invalid options GHashTable."); return SRD_ERR_ARG; } gstate = PyGILState_Ensure(); if (!PyObject_HasAttrString(di->decoder->py_dec, "options")) { /* Decoder has no options. */ PyGILState_Release(gstate); if (g_hash_table_size(options) == 0) { /* No options provided. */ return SRD_OK; } else { srd_err("Protocol decoder has no options."); return SRD_ERR_ARG; } return SRD_OK; } ret = SRD_ERR_PYTHON; py_optval = NULL; /* * The 'options' tuple is a class variable, but we need to * change it. Changing it directly will affect the entire class, * so we need to create a new object for it, and populate that * instead. */ if (!(py_di_options = PyObject_GetAttrString(di->py_inst, "options"))) goto err_out; Py_DECREF(py_di_options); py_di_options = PyDict_New(); PyObject_SetAttrString(di->py_inst, "options", py_di_options); for (l = di->decoder->options; l; l = l->next) { sdo = l->data; if ((value = g_hash_table_lookup(options, sdo->id))) { /* A value was supplied for this option. */ if (!g_variant_type_equal(g_variant_get_type(value), g_variant_get_type(sdo->def))) { srd_err("Option '%s' should have the same type " "as the default value.", sdo->id); goto err_out; } } else { /* Use default for this option. */ value = sdo->def; } if (g_variant_is_of_type(value, G_VARIANT_TYPE_STRING)) { val_str = g_variant_get_string(value, NULL); if (!(py_optval = PyUnicode_FromString(val_str))) { /* Some UTF-8 encoding error. */ PyErr_Clear(); srd_err("Option '%s' requires a UTF-8 string value.", sdo->id); goto err_out; } } else if (g_variant_is_of_type(value, G_VARIANT_TYPE_INT64)) { val_int = g_variant_get_int64(value); if (!(py_optval = PyLong_FromLong(val_int))) { /* ValueError Exception */ PyErr_Clear(); srd_err("Option '%s' has invalid integer value.", sdo->id); goto err_out; } } else if (g_variant_is_of_type(value, G_VARIANT_TYPE_DOUBLE)) { val_double = g_variant_get_double(value); if (!(py_optval = PyFloat_FromDouble(val_double))) { /* ValueError Exception */ PyErr_Clear(); srd_err("Option '%s' has invalid float value.", sdo->id); goto err_out; } } if (PyDict_SetItemString(py_di_options, sdo->id, py_optval) == -1) goto err_out; /* Not harmful even if we used the default. */ g_hash_table_remove(options, sdo->id); } if (g_hash_table_size(options) != 0) srd_warn("Unknown options specified for '%s'", di->inst_id); ret = SRD_OK; err_out: Py_XDECREF(py_optval); if (PyErr_Occurred()) { srd_exception_catch("Stray exception in srd_inst_option_set()"); ret = SRD_ERR_PYTHON; } PyGILState_Release(gstate); return ret; } /* Helper GComparefunc for g_slist_find_custom() in srd_inst_channel_set_all() */ static gint compare_channel_id(const struct srd_channel *pdch, const char *channel_id) { return strcmp(pdch->id, channel_id); } /** * Set all channels in a decoder instance. * * This function sets _all_ channels for the specified decoder instance, i.e., * it overwrites any channels that were already defined (if any). * * @param di Decoder instance. * @param new_channels A GHashTable of channels to set. Key is channel name, * value is the channel number. Samples passed to this * instance will be arranged in this order. * * @return SRD_OK upon success, a (negative) error code otherwise. * * @since 0.4.0 */ SRD_API int srd_inst_channel_set_all(struct srd_decoder_inst *di, GHashTable *new_channels) { GVariant *channel_val; GList *l; GSList *sl; struct srd_channel *pdch; int *new_channelmap, new_channelnum, num_required_channels, i; char *channel_id; srd_dbg("Setting channels for instance %s with list of %d channels.", di->inst_id, g_hash_table_size(new_channels)); if (g_hash_table_size(new_channels) == 0) /* No channels provided. */ return SRD_OK; if (di->dec_num_channels == 0) { /* Decoder has no channels. */ srd_err("Protocol decoder %s has no channels to define.", di->decoder->name); return SRD_ERR_ARG; } new_channelmap = g_malloc0(sizeof(int) * di->dec_num_channels); /* * For now, map all indexes to channel -1 (can be overridden later). * This -1 is interpreted as an unspecified channel later. */ for (i = 0; i < di->dec_num_channels; i++) new_channelmap[i] = -1; for (l = g_hash_table_get_keys(new_channels); l; l = l->next) { channel_id = l->data; channel_val = g_hash_table_lookup(new_channels, channel_id); if (!g_variant_is_of_type(channel_val, G_VARIANT_TYPE_INT32)) { /* Channel name was specified without a value. */ srd_err("No channel number was specified for %s.", channel_id); g_free(new_channelmap); return SRD_ERR_ARG; } new_channelnum = g_variant_get_int32(channel_val); if (!(sl = g_slist_find_custom(di->decoder->channels, channel_id, (GCompareFunc)compare_channel_id))) { /* Fall back on optional channels. */ if (!(sl = g_slist_find_custom(di->decoder->opt_channels, channel_id, (GCompareFunc)compare_channel_id))) { srd_err("Protocol decoder %s has no channel " "'%s'.", di->decoder->name, channel_id); g_free(new_channelmap); return SRD_ERR_ARG; } } pdch = sl->data; new_channelmap[pdch->order] = new_channelnum; srd_dbg("Setting channel mapping: %s (PD ch idx %d) = input data ch idx %d.", pdch->id, pdch->order, new_channelnum); } srd_dbg("Final channel map:"); num_required_channels = g_slist_length(di->decoder->channels); for (i = 0; i < di->dec_num_channels; i++) { GSList *l = g_slist_nth(di->decoder->channels, i); if (!l) l = g_slist_nth(di->decoder->opt_channels, i - num_required_channels); pdch = l->data; srd_dbg(" - PD ch idx %d (%s) = input data ch idx %d (%s)", i, pdch->id, new_channelmap[i], (i < num_required_channels) ? "required" : "optional"); } /* Report an error if not all required channels were specified. */ for (i = 0; i < num_required_channels; i++) { if (new_channelmap[i] != -1) continue; pdch = g_slist_nth(di->decoder->channels, i)->data; srd_err("Required channel '%s' (index %d) was not specified.", pdch->id, i); g_free(new_channelmap); return SRD_ERR; } g_free(di->dec_channelmap); di->dec_channelmap = new_channelmap; return SRD_OK; } /** * Create a new protocol decoder instance. * * @param sess The session holding the protocol decoder instance. * @param decoder_id Decoder 'id' field. * @param options GHashtable of options which override the defaults set in * the decoder class. May be NULL. * * @return Pointer to a newly allocated struct srd_decoder_inst, or * NULL in case of failure. * * @since 0.3.0 */ SRD_API struct srd_decoder_inst *srd_inst_new(struct srd_session *sess, const char *decoder_id, GHashTable *options) { int i; struct srd_decoder *dec; struct srd_decoder_inst *di; char *inst_id; PyGILState_STATE gstate; i = 1; srd_dbg("Creating new %s instance.", decoder_id); if (session_is_valid(sess) != SRD_OK) { srd_err("Invalid session."); return NULL; } if (!(dec = srd_decoder_get_by_id(decoder_id))) { srd_err("Protocol decoder %s not found.", decoder_id); return NULL; } di = g_malloc0(sizeof(struct srd_decoder_inst)); di->decoder = dec; di->sess = sess; if (options) { inst_id = g_hash_table_lookup(options, "id"); if (inst_id) di->inst_id = g_strdup(inst_id); g_hash_table_remove(options, "id"); } /* Create a unique instance ID (as none was provided). */ if (!di->inst_id) { di->inst_id = g_strdup_printf("%s-%d", decoder_id, i++); while (srd_inst_find_by_id(sess, di->inst_id)) { g_free(di->inst_id); di->inst_id = g_strdup_printf("%s-%d", decoder_id, i++); } } /* * Prepare a default channel map, where samples come in the * order in which the decoder class defined them. */ di->dec_num_channels = g_slist_length(di->decoder->channels) + g_slist_length(di->decoder->opt_channels); if (di->dec_num_channels) { di->dec_channelmap = g_malloc(sizeof(int) * di->dec_num_channels); for (i = 0; i < di->dec_num_channels; i++) di->dec_channelmap[i] = i; /* * Will be used to prepare a sample at every iteration * of the instance's decode() method. */ di->channel_samples = g_malloc(di->dec_num_channels); } /* Default to the initial pins being the same as in sample 0. */ oldpins_array_seed(di); gstate = PyGILState_Ensure(); /* Create a new instance of this decoder class. */ if (!(di->py_inst = PyObject_CallObject(dec->py_dec, NULL))) { if (PyErr_Occurred()) srd_exception_catch("Failed to create %s instance", decoder_id); PyGILState_Release(gstate); g_free(di->dec_channelmap); g_free(di); return NULL; } PyGILState_Release(gstate); if (options && srd_inst_option_set(di, options) != SRD_OK) { g_free(di->dec_channelmap); g_free(di); return NULL; } di->condition_list = NULL; di->match_array = NULL; di->abs_start_samplenum = 0; di->abs_end_samplenum = 0; di->inbuf = NULL; di->inbuflen = 0; di->abs_cur_samplenum = 0; di->thread_handle = NULL; di->got_new_samples = FALSE; di->handled_all_samples = FALSE; di->want_wait_terminate = FALSE; /* * Strictly speaking initialization of statically allocated * condition and mutex variables (or variables allocated on the * stack) is not required, but won't harm either. Explicitly * running init() will better match subsequent clear() calls. */ g_cond_init(&di->got_new_samples_cond); g_cond_init(&di->handled_all_samples_cond); g_mutex_init(&di->data_mutex); /* Instance takes input from a frontend by default. */ sess->di_list = g_slist_append(sess->di_list, di); srd_dbg("Created new %s instance with ID %s.", decoder_id, di->inst_id); return di; } static void srd_inst_join_decode_thread(struct srd_decoder_inst *di) { if (!di) return; if (!di->thread_handle) return; srd_dbg("%s: Joining decoder thread.", di->inst_id); /* * Terminate potentially running threads which still * execute the decoder instance's decode() method. */ srd_dbg("%s: Raising want_term, sending got_new.", di->inst_id); g_mutex_lock(&di->data_mutex); di->want_wait_terminate = TRUE; g_cond_signal(&di->got_new_samples_cond); g_mutex_unlock(&di->data_mutex); srd_dbg("%s: Running join().", di->inst_id); (void)g_thread_join(di->thread_handle); srd_dbg("%s: Call to join() done.", di->inst_id); di->thread_handle = NULL; /* * Reset condition and mutex variables, such that next * operations on them will find them in a clean state. */ g_cond_clear(&di->got_new_samples_cond); g_cond_init(&di->got_new_samples_cond); g_cond_clear(&di->handled_all_samples_cond); g_cond_init(&di->handled_all_samples_cond); g_mutex_clear(&di->data_mutex); g_mutex_init(&di->data_mutex); } static void srd_inst_reset_state(struct srd_decoder_inst *di) { if (!di) return; srd_dbg("%s: Resetting decoder state.", di->inst_id); /* * Reset internal state of the decoder. */ condition_list_free(di); match_array_free(di); di->abs_start_samplenum = 0; di->abs_end_samplenum = 0; di->inbuf = NULL; di->inbuflen = 0; di->abs_cur_samplenum = 0; oldpins_array_free(di); di->got_new_samples = FALSE; di->handled_all_samples = FALSE; di->want_wait_terminate = FALSE; /* Conditions and mutex got reset after joining the thread. */ } /** * Stack a decoder instance on top of another. * * @param sess The session holding the protocol decoder instances. * @param di_bottom The instance on top of which di_top will be stacked. * @param di_top The instance to go on top. * * @return SRD_OK upon success, a (negative) error code otherwise. * * @since 0.3.0 */ SRD_API int srd_inst_stack(struct srd_session *sess, struct srd_decoder_inst *di_bottom, struct srd_decoder_inst *di_top) { if (session_is_valid(sess) != SRD_OK) { srd_err("Invalid session."); return SRD_ERR_ARG; } if (!di_bottom || !di_top) { srd_err("Invalid from/to instance pair."); return SRD_ERR_ARG; } if (g_slist_find(sess->di_list, di_top)) { /* Remove from the unstacked list. */ sess->di_list = g_slist_remove(sess->di_list, di_top); } /* Stack on top of source di. */ di_bottom->next_di = g_slist_append(di_bottom->next_di, di_top); srd_dbg("Stacked %s onto %s.", di_top->inst_id, di_bottom->inst_id); return SRD_OK; } /** * Search a decoder instance and its stack for instance ID. * * @param[in] inst_id ID to search for. * @param[in] stack A decoder instance, potentially with stacked instances. * * @return The matching instance, or NULL. */ static struct srd_decoder_inst *srd_inst_find_by_id_stack(const char *inst_id, struct srd_decoder_inst *stack) { const GSList *l; struct srd_decoder_inst *tmp, *di; if (!strcmp(stack->inst_id, inst_id)) return stack; /* Otherwise, look recursively in our stack. */ di = NULL; if (stack->next_di) { for (l = stack->next_di; l; l = l->next) { tmp = l->data; if (!strcmp(tmp->inst_id, inst_id)) { di = tmp; break; } } } return di; } /** * Find a decoder instance by its instance ID. * * This will recurse to find the instance anywhere in the stack tree of the * given session. * * @param sess The session holding the protocol decoder instance. * @param inst_id The instance ID to be found. * * @return Pointer to struct srd_decoder_inst, or NULL if not found. * * @since 0.3.0 */ SRD_API struct srd_decoder_inst *srd_inst_find_by_id(struct srd_session *sess, const char *inst_id) { GSList *l; struct srd_decoder_inst *tmp, *di; if (session_is_valid(sess) != SRD_OK) { srd_err("Invalid session."); return NULL; } di = NULL; for (l = sess->di_list; l; l = l->next) { tmp = l->data; if ((di = srd_inst_find_by_id_stack(inst_id, tmp)) != NULL) break; } return di; } static struct srd_decoder_inst *srd_sess_inst_find_by_obj( struct srd_session *sess, const GSList *stack, const PyObject *obj) { const GSList *l; struct srd_decoder_inst *tmp, *di; if (session_is_valid(sess) != SRD_OK) { srd_err("Invalid session."); return NULL; } di = NULL; for (l = stack ? stack : sess->di_list; di == NULL && l != NULL; l = l->next) { tmp = l->data; if (tmp->py_inst == obj) di = tmp; else if (tmp->next_di) di = srd_sess_inst_find_by_obj(sess, tmp->next_di, obj); } return di; } /** * Find a decoder instance by its Python object. * * I.e. find that instance's instantiation of the sigrokdecode.Decoder class. * This will recurse to find the instance anywhere in the stack tree of all * sessions. * * @param stack Pointer to a GSList of struct srd_decoder_inst, indicating the * stack to search. To start searching at the bottom level of * decoder instances, pass NULL. * @param obj The Python class instantiation. * * @return Pointer to struct srd_decoder_inst, or NULL if not found. * * @private * * @since 0.1.0 */ SRD_PRIV struct srd_decoder_inst *srd_inst_find_by_obj(const GSList *stack, const PyObject *obj) { struct srd_decoder_inst *di; struct srd_session *sess; GSList *l; di = NULL; for (l = sessions; di == NULL && l != NULL; l = l->next) { sess = l->data; di = srd_sess_inst_find_by_obj(sess, stack, obj); } return di; } /** * Set the list of initial (assumed) pin values. * * @param di Decoder instance to use. Must not be NULL. * @param initial_pins A GArray of uint8_t values. Must not be NULL. * * @since 0.5.0 */ SRD_API int srd_inst_initial_pins_set_all(struct srd_decoder_inst *di, GArray *initial_pins) { int i; GString *s; if (!di) { srd_err("Invalid decoder instance."); return SRD_ERR_ARG; } if (!initial_pins) return SRD_ERR_ARG; if (initial_pins->len != (guint)di->dec_num_channels) { srd_err("Incorrect number of channels (need %d, got %d).", di->dec_num_channels, initial_pins->len); return SRD_ERR_ARG; } /* Sanity-check initial pin state values. */ for (i = 0; i < di->dec_num_channels; i++) { if (initial_pins->data[i] <= 2) continue; srd_err("Invalid initial channel %d pin state: %d.", i, initial_pins->data[i]); return SRD_ERR_ARG; } s = g_string_sized_new(100); oldpins_array_seed(di); for (i = 0; i < di->dec_num_channels; i++) { di->old_pins_array->data[i] = initial_pins->data[i]; g_string_append_printf(s, "%d, ", di->old_pins_array->data[i]); } s = g_string_truncate(s, s->len - 2); srd_dbg("Initial pins: %s.", s->str); g_string_free(s, TRUE); return SRD_OK; } /** @private */ SRD_PRIV void oldpins_array_seed(struct srd_decoder_inst *di) { size_t count; GArray *arr; if (!di) return; if (di->old_pins_array) return; srd_dbg("%s: Seeding old pins, %s().", di->inst_id, __func__); count = di->dec_num_channels; arr = g_array_sized_new(FALSE, TRUE, sizeof(uint8_t), count); g_array_set_size(arr, count); memset(arr->data, SRD_INITIAL_PIN_SAME_AS_SAMPLE0, count); di->old_pins_array = arr; } /** @private */ SRD_PRIV void oldpins_array_free(struct srd_decoder_inst *di) { if (!di) return; if (!di->old_pins_array) return; srd_dbg("%s: Releasing initial pin state.", di->inst_id); g_array_free(di->old_pins_array, TRUE); di->old_pins_array = NULL; } /** @private */ SRD_PRIV int srd_inst_start(struct srd_decoder_inst *di) { PyObject *py_res; GSList *l; struct srd_decoder_inst *next_di; int ret; PyGILState_STATE gstate; srd_dbg("Calling start() method on protocol decoder instance %s.", di->inst_id); gstate = PyGILState_Ensure(); /* Run self.start(). */ if (!(py_res = PyObject_CallMethod(di->py_inst, "start", NULL))) { srd_exception_catch("Protocol decoder instance %s", di->inst_id); PyGILState_Release(gstate); return SRD_ERR_PYTHON; } Py_DecRef(py_res); /* Set self.samplenum to 0. */ PyObject_SetAttrString(di->py_inst, "samplenum", PyLong_FromLong(0)); /* Set self.matched to None. */ PyObject_SetAttrString(di->py_inst, "matched", Py_None); PyGILState_Release(gstate); /* Start all the PDs stacked on top of this one. */ for (l = di->next_di; l; l = l->next) { next_di = l->data; if ((ret = srd_inst_start(next_di)) != SRD_OK) return ret; } return SRD_OK; } /** * Check whether the specified sample matches the specified term. * * In the case of SRD_TERM_SKIP, this function can modify * term->num_samples_already_skipped. * * @param old_sample The value of the previous sample (0/1). * @param sample The value of the current sample (0/1). * @param term The term that should be checked for a match. Must not be NULL. * * @retval TRUE The current sample matches the specified term. * @retval FALSE The current sample doesn't match the specified term, or an * invalid term was provided. * * @private */ static gboolean sample_matches(uint8_t old_sample, uint8_t sample, struct srd_term *term) { /* Caller ensures term != NULL. */ switch (term->type) { case SRD_TERM_HIGH: if (sample == 1) return TRUE; break; case SRD_TERM_LOW: if (sample == 0) return TRUE; break; case SRD_TERM_RISING_EDGE: if (old_sample == 0 && sample == 1) return TRUE; break; case SRD_TERM_FALLING_EDGE: if (old_sample == 1 && sample == 0) return TRUE; break; case SRD_TERM_EITHER_EDGE: if ((old_sample == 1 && sample == 0) || (old_sample == 0 && sample == 1)) return TRUE; break; case SRD_TERM_NO_EDGE: if ((old_sample == 0 && sample == 0) || (old_sample == 1 && sample == 1)) return TRUE; break; case SRD_TERM_SKIP: if (term->num_samples_already_skipped == term->num_samples_to_skip) return TRUE; term->num_samples_already_skipped++; break; default: srd_err("Unknown term type %d.", term->type); break; } return FALSE; } /** @private */ SRD_PRIV void match_array_free(struct srd_decoder_inst *di) { if (!di || !di->match_array) return; g_array_free(di->match_array, TRUE); di->match_array = NULL; } /** @private */ SRD_PRIV void condition_list_free(struct srd_decoder_inst *di) { GSList *l, *ll; if (!di) return; for (l = di->condition_list; l; l = l->next) { ll = l->data; if (ll) g_slist_free_full(ll, g_free); } di->condition_list = NULL; } static gboolean have_non_null_conds(const struct srd_decoder_inst *di) { GSList *l, *cond; if (!di) return FALSE; for (l = di->condition_list; l; l = l->next) { cond = l->data; if (cond) return TRUE; } return FALSE; } static void update_old_pins_array(struct srd_decoder_inst *di, const uint8_t *sample_pos) { uint8_t sample; int i, byte_offset, bit_offset; if (!di || !di->dec_channelmap || !sample_pos) return; oldpins_array_seed(di); for (i = 0; i < di->dec_num_channels; i++) { byte_offset = di->dec_channelmap[i] / 8; bit_offset = di->dec_channelmap[i] % 8; sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0; di->old_pins_array->data[i] = sample; } } static void update_old_pins_array_initial_pins(struct srd_decoder_inst *di) { uint8_t sample; int i, byte_offset, bit_offset; const uint8_t *sample_pos; if (!di || !di->dec_channelmap) return; sample_pos = di->inbuf + ((di->abs_cur_samplenum - di->abs_start_samplenum) * di->data_unitsize); oldpins_array_seed(di); for (i = 0; i < di->dec_num_channels; i++) { if (di->old_pins_array->data[i] != SRD_INITIAL_PIN_SAME_AS_SAMPLE0) continue; byte_offset = di->dec_channelmap[i] / 8; bit_offset = di->dec_channelmap[i] % 8; sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0; di->old_pins_array->data[i] = sample; } } static gboolean term_matches(const struct srd_decoder_inst *di, struct srd_term *term, const uint8_t *sample_pos) { uint8_t old_sample, sample; int byte_offset, bit_offset, ch; /* Caller ensures di, di->dec_channelmap, term, sample_pos != NULL. */ if (term->type == SRD_TERM_SKIP) return sample_matches(0, 0, term); ch = term->channel; byte_offset = di->dec_channelmap[ch] / 8; bit_offset = di->dec_channelmap[ch] % 8; sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0; old_sample = di->old_pins_array->data[ch]; return sample_matches(old_sample, sample, term); } static gboolean all_terms_match(const struct srd_decoder_inst *di, const GSList *cond, const uint8_t *sample_pos) { const GSList *l; struct srd_term *term; /* Caller ensures di, cond, sample_pos != NULL. */ for (l = cond; l; l = l->next) { term = l->data; if (!term_matches(di, term, sample_pos)) return FALSE; } return TRUE; } static gboolean at_least_one_condition_matched( const struct srd_decoder_inst *di, unsigned int num_conditions) { unsigned int i; /* Caller ensures di != NULL. */ for (i = 0; i < num_conditions; i++) { if (di->match_array->data[i]) return TRUE; } return FALSE; } static gboolean find_match(struct srd_decoder_inst *di) { uint64_t i, j, num_samples_to_process; GSList *l, *cond; const uint8_t *sample_pos; unsigned int num_conditions; /* Caller ensures di != NULL. */ /* Check whether the condition list is NULL/empty. */ if (!di->condition_list) { srd_dbg("NULL/empty condition list, automatic match."); return TRUE; } /* Check whether we have any non-NULL conditions. */ if (!have_non_null_conds(di)) { srd_dbg("Only NULL conditions in list, automatic match."); return TRUE; } num_samples_to_process = di->abs_end_samplenum - di->abs_cur_samplenum; num_conditions = g_slist_length(di->condition_list); /* di->match_array is NULL here. Create a new GArray. */ di->match_array = g_array_sized_new(FALSE, TRUE, sizeof(gboolean), num_conditions); g_array_set_size(di->match_array, num_conditions); /* Sample 0: Set di->old_pins_array for SRD_INITIAL_PIN_SAME_AS_SAMPLE0 pins. */ if (di->abs_cur_samplenum == 0) update_old_pins_array_initial_pins(di); for (i = 0; i < num_samples_to_process; i++, (di->abs_cur_samplenum)++) { sample_pos = di->inbuf + ((di->abs_cur_samplenum - di->abs_start_samplenum) * di->data_unitsize); /* Check whether the current sample matches at least one of the conditions (logical OR). */ /* IMPORTANT: We need to check all conditions, even if there was a match already! */ for (l = di->condition_list, j = 0; l; l = l->next, j++) { cond = l->data; if (!cond) continue; /* All terms in 'cond' must match (logical AND). */ di->match_array->data[j] = all_terms_match(di, cond, sample_pos); } update_old_pins_array(di, sample_pos); /* If at least one condition matched we're done. */ if (at_least_one_condition_matched(di, num_conditions)) return TRUE; } return FALSE; } /** * Process available samples and check if they match the defined conditions. * * This function returns if there is an error, or when a match is found, or * when all samples have been processed (whether a match was found or not). * This function immediately terminates when the decoder's wait() method * invocation shall get terminated. * * @param di The decoder instance to use. Must not be NULL. * @param found_match Will be set to TRUE if at least one condition matched, * FALSE otherwise. Must not be NULL. * * @retval SRD_OK No errors occured, see found_match for the result. * @retval SRD_ERR_ARG Invalid arguments. * * @private */ SRD_PRIV int process_samples_until_condition_match(struct srd_decoder_inst *di, gboolean *found_match) { if (!di || !found_match) return SRD_ERR_ARG; *found_match = FALSE; if (di->want_wait_terminate) return SRD_OK; /* Check if any of the current condition(s) match. */ while (TRUE) { /* Feed the (next chunk of the) buffer to find_match(). */ *found_match = find_match(di); /* Did we handle all samples yet? */ if (di->abs_cur_samplenum >= di->abs_end_samplenum) { srd_dbg("Done, handled all samples (abs cur %" PRIu64 " / abs end %" PRIu64 ").", di->abs_cur_samplenum, di->abs_end_samplenum); return SRD_OK; } /* If we didn't find a match, continue looking. */ if (!(*found_match)) continue; /* At least one condition matched, return. */ return SRD_OK; } return SRD_OK; } /** * Worker thread (per PD-stack). * * @param data Pointer to the lowest-level PD's device instance. * Must not be NULL. * * @return NULL if there was an error. */ static gpointer di_thread(gpointer data) { PyObject *py_res; struct srd_decoder_inst *di; int wanted_term; PyGILState_STATE gstate; if (!data) return NULL; di = data; srd_dbg("%s: Starting thread routine for decoder.", di->inst_id); gstate = PyGILState_Ensure(); /* * Call self.decode(). Only returns if the PD throws an exception. * "Regular" termination of the decode() method is not expected. */ Py_IncRef(di->py_inst); srd_dbg("%s: Calling decode() method.", di->inst_id); py_res = PyObject_CallMethod(di->py_inst, "decode", NULL); srd_dbg("%s: decode() method terminated.", di->inst_id); /* * Make sure to unblock potentially pending srd_inst_decode() * calls in application threads after the decode() method might * have terminated, while it neither has processed sample data * nor has terminated upon request. This happens e.g. when "need * a samplerate to decode" exception is thrown. */ g_mutex_lock(&di->data_mutex); wanted_term = di->want_wait_terminate; di->want_wait_terminate = TRUE; di->handled_all_samples = TRUE; g_cond_signal(&di->handled_all_samples_cond); g_mutex_unlock(&di->data_mutex); /* * Check for the termination cause of the decode() method. * Though this is mostly for information. */ if (!py_res && wanted_term) { /* * Silently ignore errors upon return from decode() calls * when termination was requested. Terminate the thread * which executed this instance's decode() logic. */ srd_dbg("%s: Thread done (!res, want_term).", di->inst_id); PyErr_Clear(); PyGILState_Release(gstate); return NULL; } if (!py_res) { /* * The decode() invocation terminated unexpectedly. Have * the back trace printed, and terminate the thread which * executed the decode() method. */ srd_dbg("%s: decode() terminated unrequested.", di->inst_id); srd_exception_catch("Protocol decoder instance %s: ", di->inst_id); srd_dbg("%s: Thread done (!res, !want_term).", di->inst_id); PyGILState_Release(gstate); return NULL; } /* * TODO: By design the decode() method is not supposed to terminate. * Nevertheless we have the thread joined, and srd backend calls to * decode() will re-start another thread transparently. */ srd_dbg("%s: decode() terminated (req %d).", di->inst_id, wanted_term); Py_DecRef(py_res); PyErr_Clear(); PyGILState_Release(gstate); srd_dbg("%s: Thread done (with res).", di->inst_id); return NULL; } /** * Decode a chunk of samples. * * The calls to this function must provide the samples that shall be * used by the protocol decoder * - in the correct order ([...]5, 6, 4, 7, 8[...] is a bug), * - starting from sample zero (2, 3, 4, 5, 6[...] is a bug), * - consecutively, with no gaps (0, 1, 2, 4, 5[...] is a bug). * * The start- and end-sample numbers are absolute sample numbers (relative * to the start of the whole capture/file/stream), i.e. they are not relative * sample numbers within the chunk specified by 'inbuf' and 'inbuflen'. * * Correct example (4096 samples total, 4 chunks @ 1024 samples each): * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * srd_inst_decode(di, 1024, 2048, inbuf, 1024, 1); * srd_inst_decode(di, 2048, 3072, inbuf, 1024, 1); * srd_inst_decode(di, 3072, 4096, inbuf, 1024, 1); * * The chunk size ('inbuflen') can be arbitrary and can differ between calls. * * Correct example (4096 samples total, 7 chunks @ various samples each): * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * srd_inst_decode(di, 1024, 1124, inbuf, 100, 1); * srd_inst_decode(di, 1124, 1424, inbuf, 300, 1); * srd_inst_decode(di, 1424, 1643, inbuf, 219, 1); * srd_inst_decode(di, 1643, 2048, inbuf, 405, 1); * srd_inst_decode(di, 2048, 3072, inbuf, 1024, 1); * srd_inst_decode(di, 3072, 4096, inbuf, 1024, 1); * * INCORRECT example (4096 samples total, 4 chunks @ 1024 samples each, but * the start- and end-samplenumbers are not absolute): * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * srd_inst_decode(di, 0, 1024, inbuf, 1024, 1); * * @param di The decoder instance to call. Must not be NULL. * @param abs_start_samplenum The absolute starting sample number for the * buffer's sample set, relative to the start of capture. * @param abs_end_samplenum The absolute ending sample number for the * buffer's sample set, relative to the start of capture. * @param inbuf The buffer to decode. Must not be NULL. * @param inbuflen Length of the buffer. Must be > 0. * @param unitsize The number of bytes per sample. Must be > 0. * * @return SRD_OK upon success, a (negative) error code otherwise. * * @private */ SRD_PRIV int srd_inst_decode(struct srd_decoder_inst *di, uint64_t abs_start_samplenum, uint64_t abs_end_samplenum, const uint8_t *inbuf, uint64_t inbuflen, uint64_t unitsize) { /* Return an error upon unusable input. */ if (!di) { srd_dbg("empty decoder instance"); return SRD_ERR_ARG; } if (!inbuf) { srd_dbg("NULL buffer pointer"); return SRD_ERR_ARG; } if (inbuflen == 0) { srd_dbg("empty buffer"); return SRD_ERR_ARG; } if (unitsize == 0) { srd_dbg("unitsize 0"); return SRD_ERR_ARG; } if (abs_start_samplenum != di->abs_cur_samplenum || abs_end_samplenum < abs_start_samplenum) { srd_dbg("Incorrect sample numbers: start=%" PRIu64 ", cur=%" PRIu64 ", end=%" PRIu64 ".", abs_start_samplenum, di->abs_cur_samplenum, abs_end_samplenum); return SRD_ERR_ARG; } di->data_unitsize = unitsize; srd_dbg("Decoding: abs start sample %" PRIu64 ", abs end sample %" PRIu64 " (%" PRIu64 " samples, %" PRIu64 " bytes, unitsize = " "%d), instance %s.", abs_start_samplenum, abs_end_samplenum, abs_end_samplenum - abs_start_samplenum, inbuflen, di->data_unitsize, di->inst_id); /* If this is the first call, start the worker thread. */ if (!di->thread_handle) { srd_dbg("No worker thread for this decoder stack " "exists yet, creating one: %s.", di->inst_id); di->thread_handle = g_thread_new(di->inst_id, di_thread, di); } /* Push the new sample chunk to the worker thread. */ g_mutex_lock(&di->data_mutex); di->abs_start_samplenum = abs_start_samplenum; di->abs_end_samplenum = abs_end_samplenum; di->inbuf = inbuf; di->inbuflen = inbuflen; di->got_new_samples = TRUE; di->handled_all_samples = FALSE; /* Signal the thread that we have new data. */ g_cond_signal(&di->got_new_samples_cond); g_mutex_unlock(&di->data_mutex); /* When all samples in this chunk were handled, return. */ g_mutex_lock(&di->data_mutex); while (!di->handled_all_samples && !di->want_wait_terminate) g_cond_wait(&di->handled_all_samples_cond, &di->data_mutex); g_mutex_unlock(&di->data_mutex); if (di->want_wait_terminate) return SRD_ERR_TERM_REQ; return SRD_OK; } /** * Terminate current decoder work, prepare for re-use on new input data. * * Terminates all decoder operations in the specified decoder instance * and the instances stacked on top of it. Resets internal state such * that the previously constructed stack can process new input data that * is not related to previously processed input data. This avoids the * expensive and complex re-construction of decoder stacks. * * Callers are expected to follow up with start, metadata, and decode * calls like they would for newly constructed decoder stacks. * * @param di The decoder instance to call. Must not be NULL. * @return SRD_OK upon success, a (negative) error code otherwise. * @private */ SRD_PRIV int srd_inst_terminate_reset(struct srd_decoder_inst *di) { PyGILState_STATE gstate; PyObject *py_ret; GSList *l; int ret; if (!di) return SRD_ERR_ARG; /* * Request termination and wait for previously initiated * background operation to finish. Reset internal state, but * do not start releasing resources yet. This shall result in * decoders' state just like after creation. This block handles * the C language library side. */ srd_dbg("Terminating instance %s", di->inst_id); srd_inst_join_decode_thread(di); srd_inst_reset_state(di); /* * Have the Python side's .reset() method executed (if the PD * implements it). It's assumed that .reset() assigns variables * very much like __init__() used to do in the past. Thus memory * that was allocated in previous calls gets released by Python * as it's not referenced any longer. */ gstate = PyGILState_Ensure(); if (PyObject_HasAttrString(di->py_inst, "reset")) { srd_dbg("Calling .reset() of instance %s", di->inst_id); py_ret = PyObject_CallMethod(di->py_inst, "reset", NULL); Py_XDECREF(py_ret); } PyGILState_Release(gstate); /* * Pass the "restart" request to all stacked decoders. */ for (l = di->next_di; l; l = l->next) { ret = srd_inst_terminate_reset(l->data); if (ret != SRD_OK) return ret; } return SRD_OK; } /** @private */ SRD_PRIV void srd_inst_free(struct srd_decoder_inst *di) { GSList *l; struct srd_pd_output *pdo; PyGILState_STATE gstate; srd_dbg("Freeing instance %s", di->inst_id); srd_inst_join_decode_thread(di); srd_inst_reset_state(di); gstate = PyGILState_Ensure(); Py_DecRef(di->py_inst); PyGILState_Release(gstate); g_free(di->inst_id); g_free(di->dec_channelmap); g_free(di->channel_samples); g_slist_free(di->next_di); for (l = di->pd_output; l; l = l->next) { pdo = l->data; g_free(pdo->proto_id); g_free(pdo); } g_slist_free(di->pd_output); g_free(di); } /** @private */ SRD_PRIV void srd_inst_free_all(struct srd_session *sess) { if (session_is_valid(sess) != SRD_OK) { srd_err("Invalid session."); return; } g_slist_free_full(sess->di_list, (GDestroyNotify)srd_inst_free); } /** @} */