## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011 Gareth McMullin ## Copyright (C) 2012-2013 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd ''' OUTPUT_PYTHON format: Packet: [, ] , : - 'SOP', None - 'SYM', - 'BIT', - 'STUFF BIT', None - 'EOP', None : - 'J', 'K', 'SE0', or 'SE1' : - 0 or 1 - Note: Symbols like SE0, SE1, and the J that's part of EOP don't yield 'BIT'. ''' # Low-/full-speed symbols. # Note: Low-speed J and K are inverted compared to the full-speed J and K! symbols = { 'low-speed': { # (, ): (0, 0): 'SE0', (1, 0): 'K', (0, 1): 'J', (1, 1): 'SE1', }, 'full-speed': { # (, ): (0, 0): 'SE0', (1, 0): 'J', (0, 1): 'K', (1, 1): 'SE1', }, } bitrates = { 'low-speed': 1500000, # 1.5Mb/s (+/- 1.5%) 'full-speed': 12000000, # 12Mb/s (+/- 0.25%) } sym_idx = { 'J': 0, 'K': 1, 'SE0': 2, 'SE1': 3, } class Decoder(srd.Decoder): api_version = 1 id = 'usb_signalling' name = 'USB signalling' longname = 'Universal Serial Bus (LS/FS) signalling' desc = 'USB (low-speed and full-speed) signalling protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['usb_signalling'] probes = ( {'id': 'dp', 'name': 'D+', 'desc': 'USB D+ signal'}, {'id': 'dm', 'name': 'D-', 'desc': 'USB D- signal'}, ) options = ( {'id': 'signalling', 'desc': 'Signalling', 'default': 'full-speed', 'values': ('full-speed', 'low-speed')}, ) annotations = ( ('sym-j', 'J symbol'), ('sym-k', 'K symbol'), ('sym-se0', 'SE0 symbol'), ('sym-se1', 'SE1 symbol'), ('sop', 'Start of packet (SOP)'), ('eop', 'End of packet (EOP)'), ('bit', 'Bit'), ('stuffbit', 'Stuff bit'), ) annotation_rows = ( ('bits', 'Bits', (4, 5, 6, 7)), ('symbols', 'Symbols', (0, 1, 2, 3)), ) def __init__(self): self.samplerate = None self.oldsym = 'J' # The "idle" state is J. self.ss_sop = None self.ss_block = None self.samplenum = 0 self.syms = [] self.bitrate = None self.bitwidth = None self.bitnum = 0 self.samplenum_target = None self.oldpins = None self.consecutive_ones = 0 self.state = 'IDLE' def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value self.bitrate = bitrates[self.options['signalling']] self.bitwidth = float(self.samplerate) / float(self.bitrate) self.halfbit = int(self.bitwidth / 2) def putpx(self, data): self.put(self.samplenum, self.samplenum, self.out_python, data) def putx(self, data): self.put(self.samplenum, self.samplenum, self.out_ann, data) def putpm(self, data): s, h = self.samplenum, self.halfbit self.put(self.ss_block - h, s + h, self.out_python, data) def putm(self, data): s, h = self.samplenum, self.halfbit self.put(self.ss_block - h, s + h, self.out_ann, data) def putpb(self, data): s, h = self.samplenum, self.halfbit self.put(s - h, s + h, self.out_python, data) def putb(self, data): s, h = self.samplenum, self.halfbit self.put(s - h, s + h, self.out_ann, data) def set_new_target_samplenum(self): bitpos = self.ss_sop + (self.bitwidth / 2) bitpos += self.bitnum * self.bitwidth self.samplenum_target = int(bitpos) def wait_for_sop(self, sym): # Wait for a Start of Packet (SOP), i.e. a J->K symbol change. if sym != 'K': self.oldsym = sym return self.ss_sop = self.samplenum self.set_new_target_samplenum() self.putpx(['SOP', None]) self.putx([4, ['SOP', 'S']]) self.state = 'GET BIT' def handle_bit(self, sym, b): if self.consecutive_ones == 6 and b == '0': # Stuff bit. self.putpb(['STUFF BIT', None]) self.putb([7, ['Stuff bit: %s' % b, 'SB: %s' % b, '%s' % b]]) self.putb([sym_idx[sym], ['%s' % sym]]) self.consecutive_ones = 0 else: # Normal bit (not a stuff bit). self.putpb(['BIT', b]) self.putb([6, ['%s' % b]]) self.putb([sym_idx[sym], ['%s' % sym]]) if b == '1': self.consecutive_ones += 1 else: self.consecutive_ones = 0 def get_eop(self, sym): # EOP: SE0 for >= 1 bittime (usually 2 bittimes), then J. self.syms.append(sym) self.putpb(['SYM', sym]) self.putb([sym_idx[sym], ['%s' % sym, '%s' % sym[0]]]) self.bitnum += 1 self.set_new_target_samplenum() self.oldsym = sym if self.syms[-2:] == ['SE0', 'J']: # Got an EOP. self.putpm(['EOP', None]) self.putm([5, ['EOP', 'E']]) self.bitnum, self.syms, self.state = 0, [], 'IDLE' self.consecutive_ones = 0 def get_bit(self, sym): if sym == 'SE0': # Start of an EOP. Change state, run get_eop() for this bit. self.state = 'GET EOP' self.ss_block = self.samplenum self.get_eop(sym) return self.syms.append(sym) self.putpb(['SYM', sym]) b = '0' if self.oldsym != sym else '1' self.handle_bit(sym, b) self.bitnum += 1 self.set_new_target_samplenum() self.oldsym = sym def decode(self, ss, es, data): if self.samplerate is None: raise Exception("Cannot decode without samplerate.") for (self.samplenum, pins) in data: # State machine. if self.state == 'IDLE': # Ignore identical samples early on (for performance reasons). if self.oldpins == pins: continue self.oldpins = pins sym = symbols[self.options['signalling']][tuple(pins)] self.wait_for_sop(sym) elif self.state in ('GET BIT', 'GET EOP'): # Wait until we're in the middle of the desired bit. if self.samplenum < self.samplenum_target: continue sym = symbols[self.options['signalling']][tuple(pins)] if self.state == 'GET BIT': self.get_bit(sym) elif self.state == 'GET EOP': self.get_eop(sym) else: raise Exception('Invalid state: %s' % self.state)