## ## This file is part of the sigrok project. ## ## Copyright (C) 2011-2012 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # # UART protocol decoder # import sigrokdecode as srd # States WAIT_FOR_START_BIT = 0 GET_START_BIT = 1 GET_DATA_BITS = 2 GET_PARITY_BIT = 3 GET_STOP_BITS = 4 # Used for differentiating between the two data directions. RX = 0 TX = 1 # Annotation feed formats ANN_ASCII = 0 ANN_DEC = 1 ANN_HEX = 2 ANN_OCT = 3 ANN_BITS = 4 # Given a parity type to check (odd, even, zero, one), the value of the # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # 'none' is _not_ allowed as value for 'parity_type'. def parity_ok(parity_type, parity_bit, data, num_data_bits): # Handle easy cases first (parity bit is always 1 or 0). if parity_type == 'zero': return parity_bit == 0 elif parity_type == 'one': return parity_bit == 1 # Count number of 1 (high) bits in the data (and the parity bit itself!). ones = bin(data).count('1') + parity_bit # Check for odd/even parity. if parity_type == 'odd': return (ones % 2) == 1 elif parity_type == 'even': return (ones % 2) == 0 else: raise Exception('Invalid parity type: %d' % parity_type) class Decoder(srd.Decoder): api_version = 1 id = 'uart' name = 'UART' longname = 'Universal Asynchronous Receiver/Transmitter' desc = 'Universal Asynchronous Receiver/Transmitter (UART)' longdesc = 'TODO.' license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] probes = [ # Allow specifying only one of the signals, e.g. if only one data # direction exists (or is relevant). {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, ] optional_probes = [] options = { 'baudrate': ['Baud rate', 115200], 'num_data_bits': ['Data bits', 8], # Valid: 5-9. 'parity_type': ['Parity type', 'none'], 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported? 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5. 'bit_order': ['Bit order', 'lsb-first'], # TODO: Options to invert the signal(s). } annotations = [ ['ASCII', 'Data bytes as ASCII characters'], ['Decimal', 'Databytes as decimal, integer values'], ['Hex', 'Data bytes in hex format'], ['Octal', 'Data bytes as octal numbers'], ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], ] def putx(self, rxtx, data): self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data) def __init__(self, **kwargs): self.samplenum = 0 self.frame_start = [-1, -1] self.startbit = [-1, -1] self.cur_data_bit = [0, 0] self.databyte = [0, 0] self.paritybit = [-1, -1] self.stopbit1 = [-1, -1] self.startsample = [-1, -1] # Initial state. self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT] self.oldbit = [None, None] def start(self, metadata): self.samplerate = metadata['samplerate'] self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart') self.out_ann = self.add(srd.OUTPUT_ANN, 'uart') # The width of one UART bit in number of samples. self.bit_width = \ float(self.samplerate) / float(self.options['baudrate']) def report(self): pass # Return true if we reached the middle of the desired bit, false otherwise. def reached_bit(self, rxtx, bitnum): # bitpos is the samplenumber which is in the middle of the # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit # (if used) or the first stop bit, and so on). bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0) bitpos += bitnum * self.bit_width if self.samplenum >= bitpos: return True return False def reached_bit_last(self, rxtx, bitnum): bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) if self.samplenum >= bitpos: return True return False def wait_for_start_bit(self, rxtx, old_signal, signal): # The start bit is always 0 (low). As the idle UART (and the stop bit) # level is 1 (high), the beginning of a start bit is a falling edge. if not (old_signal == 1 and signal == 0): return # Save the sample number where the start bit begins. self.frame_start[rxtx] = self.samplenum self.state[rxtx] = GET_START_BIT def get_start_bit(self, rxtx, signal): # Skip samples until we're in the middle of the start bit. if not self.reached_bit(rxtx, 0): return self.startbit[rxtx] = signal # The startbit must be 0. If not, we report an error. if self.startbit[rxtx] != 0: self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, ['INVALID STARTBIT', rxtx, self.startbit[rxtx]]) # TODO: Abort? Ignore rest of the frame? self.cur_data_bit[rxtx] = 0 self.databyte[rxtx] = 0 self.startsample[rxtx] = -1 self.state[rxtx] = GET_DATA_BITS self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, ['STARTBIT', rxtx, self.startbit[rxtx]]) self.put(self.frame_start[rxtx], self.samplenum, self.out_ann, [ANN_ASCII, ['Start bit', 'Start', 'S']]) def get_data_bits(self, rxtx, signal): # Skip samples until we're in the middle of the desired data bit. if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): return # Save the sample number where the data byte starts. if self.startsample[rxtx] == -1: self.startsample[rxtx] = self.samplenum # Get the next data bit in LSB-first or MSB-first fashion. if self.options['bit_order'] == 'lsb-first': self.databyte[rxtx] >>= 1 self.databyte[rxtx] |= \ (signal << (self.options['num_data_bits'] - 1)) elif self.options['bit_order'] == 'msb-first': self.databyte[rxtx] <<= 1 self.databyte[rxtx] |= (signal << 0) else: raise Exception('Invalid bit order value: %s', self.options['bit_order']) # Return here, unless we already received all data bits. # TODO? Off-by-one? if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1: self.cur_data_bit[rxtx] += 1 return self.state[rxtx] = GET_PARITY_BIT self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto, ['DATA', rxtx, self.databyte[rxtx]]) s = 'RX: ' if (rxtx == RX) else 'TX: ' self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]]) self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]]) self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]), s + hex(self.databyte[rxtx])[2:]]]) self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]), s + oct(self.databyte[rxtx])[2:]]]) self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]), s + bin(self.databyte[rxtx])[2:]]]) def get_parity_bit(self, rxtx, signal): # If no parity is used/configured, skip to the next state immediately. if self.options['parity_type'] == 'none': self.state[rxtx] = GET_STOP_BITS return # Skip samples until we're in the middle of the parity bit. if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1): return self.paritybit[rxtx] = signal self.state[rxtx] = GET_STOP_BITS if parity_ok(self.options['parity_type'], self.paritybit[rxtx], self.databyte[rxtx], self.options['num_data_bits']): # TODO: Fix range. self.put(self.samplenum, self.samplenum, self.out_proto, ['PARITYBIT', rxtx, self.paritybit[rxtx]]) self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Parity bit', 'Parity', 'P']]) else: # TODO: Fix range. # TODO: Return expected/actual parity values. self.put(self.samplenum, self.samplenum, self.out_proto, ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple... self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Parity error', 'Parity err', 'PE']]) # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, rxtx, signal): # Skip samples until we're in the middle of the stop bit(s). skip_parity = 0 if self.options['parity_type'] == 'none' else 1 b = self.options['num_data_bits'] + 1 + skip_parity if not self.reached_bit(rxtx, b): return self.stopbit1[rxtx] = signal # Stop bits must be 1. If not, we report an error. if self.stopbit1[rxtx] != 1: self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]]) # TODO: Abort? Ignore the frame? Other? self.state[rxtx] = WAIT_FOR_START_BIT # TODO: Fix range. self.put(self.samplenum, self.samplenum, self.out_proto, ['STOPBIT', rxtx, self.stopbit1[rxtx]]) self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Stop bit', 'Stop', 'P']]) def decode(self, ss, es, data): # TODO: Either RX or TX could be omitted (optional probe). for (samplenum, (rx, tx)) in data: # TODO: Start counting at 0 or 1? Increase before or after? self.samplenum += 1 # First sample: Save RX/TX value. if self.oldbit[RX] == None: self.oldbit[RX] = rx continue if self.oldbit[TX] == None: self.oldbit[TX] = tx continue # State machine. for rxtx in (RX, TX): signal = rx if (rxtx == RX) else tx if self.state[rxtx] == WAIT_FOR_START_BIT: self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) elif self.state[rxtx] == GET_START_BIT: self.get_start_bit(rxtx, signal) elif self.state[rxtx] == GET_DATA_BITS: self.get_data_bits(rxtx, signal) elif self.state[rxtx] == GET_PARITY_BIT: self.get_parity_bit(rxtx, signal) elif self.state[rxtx] == GET_STOP_BITS: self.get_stop_bits(rxtx, signal) else: raise Exception('Invalid state: %d' % self.state[rxtx]) # Save current RX/TX values for the next round. self.oldbit[rxtx] = signal