## ## This file is part of the sigrok project. ## ## Copyright (C) 2011 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # # UART protocol decoder # # # Universal Asynchronous Receiver Transmitter (UART) is a simple serial # communication protocol which allows two devices to talk to each other. # # It uses just two data signals and a ground (GND) signal: # - RX/RXD: Receive signal # - TX/TXD: Transmit signal # # The protocol is asynchronous, i.e., there is no dedicated clock signal. # Rather, both devices have to agree on a baudrate (number of bits to be # transmitted per second) beforehand. Baudrates can be arbitrary in theory, # but usually the choice is limited by the hardware UARTs that are used. # Common values are 9600 or 115200. # # The protocol allows full-duplex transmission, i.e. both devices can send # data at the same time. However, unlike SPI (which is always full-duplex, # i.e., each send operation is automatically also a receive operation), UART # allows one-way communication, too. In such a case only one signal (and GND) # is required. # # The data is sent over the TX line in so-called 'frames', which consist of: # - Exactly one start bit (always 0/low). # - Between 5 and 9 data bits. # - An (optional) parity bit. # - One or more stop bit(s). # # The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the # receiver can continually monitor its RX line for a falling edge, in order # to detect the start bit. # # Once detected, it can (due to the agreed-upon baudrate and thus the known # width/duration of one UART bit) sample the state of the RX line "in the # middle" of each (start/data/parity/stop) bit it wants to analyze. # # It is configurable whether there is a parity bit in a frame, and if yes, # which type of parity is used: # - None: No parity bit is included. # - Odd: The number of 1 bits in the data (and parity bit itself) is odd. # - Even: The number of 1 bits in the data (and parity bit itself) is even. # - Mark/one: The parity bit is always 1/high (also called 'mark state'). # - Space/zero: The parity bit is always 0/low (also called 'space state'). # # It is also configurable how many stop bits are to be used: # - 1 stop bit (most common case) # - 2 stop bits # - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width) # - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width) # # The bit order of the 5-9 data bits is LSB-first. # # Possible special cases: # - One or both data lines could be inverted, which also means that the idle # state of the signal line(s) is low instead of high. # - Only the data bits on one or both data lines (and the parity bit) could # be inverted (but the start/stop bits remain non-inverted). # - The bit order could be MSB-first instead of LSB-first. # - The baudrate could change in the middle of the communication. This only # happens in very special cases, and can only work if both devices know # to which baudrate they are to switch, and when. # - Theoretically, the baudrate on RX and the one on TX could also be # different, but that's a very obscure case and probably doesn't happen # very often in practice. # # Error conditions: # - If there is a parity bit, but it doesn't match the expected parity, # this is called a 'parity error'. # - If there are no stop bit(s), that's called a 'frame error'. # # More information: # TODO: URLs # # # Protocol output format: # # UART packet: # [, , ] # # This is the list of s and their respective : # - T_START: The data is the (integer) value of the start bit (0 or 1). # - T_DATA: The data is the (integer) value of the UART data. Valid values # range from 0 to 512 (as the data can be up to 9 bits in size). # - T_PARITY: The data is the (integer) value of the parity bit (0 or 1). # - T_STOP: The data is the (integer) value of the stop bit (0 or 1). # - T_INVALID_START: The data is the (integer) value of the start bit (0 or 1). # - T_INVALID_STOP: The data is the (integer) value of the stop bit (0 or 1). # - T_PARITY_ERROR: The data is a tuple with two entries. The first one is # the expected parity value, the second is the actual parity value. # # The field is 0 for RX packets, 1 for TX packets. # import sigrokdecode as srd # States WAIT_FOR_START_BIT = 0 GET_START_BIT = 1 GET_DATA_BITS = 2 GET_PARITY_BIT = 3 GET_STOP_BITS = 4 # Used for differentiating between the two data directions. RX = 0 TX = 1 # Parity options PARITY_NONE = 0 PARITY_ODD = 1 PARITY_EVEN = 2 PARITY_ZERO = 3 PARITY_ONE = 4 # Stop bit options STOP_BITS_0_5 = 0 STOP_BITS_1 = 1 STOP_BITS_1_5 = 2 STOP_BITS_2 = 3 # Bit order options LSB_FIRST = 0 MSB_FIRST = 1 # Annotation feed formats ANN_ASCII = 0 ANN_DEC = 1 ANN_HEX = 2 ANN_OCT = 3 ANN_BITS = 4 # Protocol output packet types T_START = 0 T_DATA = 1 T_PARITY = 2 T_STOP = 3 T_INVALID_START = 4 T_INVALID_STOP = 5 T_PARITY_ERROR = 6 # Given a parity type to check (odd, even, zero, one), the value of the # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # PARITY_NONE is _not_ allowed as value for 'parity_type'. def parity_ok(parity_type, parity_bit, data, num_data_bits): # Handle easy cases first (parity bit is always 1 or 0). if parity_type == PARITY_ZERO: return parity_bit == 0 elif parity_type == PARITY_ONE: return parity_bit == 1 # Count number of 1 (high) bits in the data (and the parity bit itself!). parity = bin(data).count('1') + parity_bit # Check for odd/even parity. if parity_type == PARITY_ODD: return (parity % 2) == 1 elif parity_type == PARITY_EVEN: return (parity % 2) == 0 else: raise Exception('Invalid parity type: %d' % parity_type) class Decoder(srd.Decoder): id = 'uart' name = 'UART' longname = 'Universal Asynchronous Receiver/Transmitter' desc = 'Universal Asynchronous Receiver/Transmitter (UART)' longdesc = 'TODO.' license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] probes = [ # Allow specifying only one of the signals, e.g. if only one data # direction exists (or is relevant). {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, ] options = { 'baudrate': ['Baud rate', 115200], 'num_data_bits': ['Data bits', 8], # Valid: 5-9. 'parity': ['Parity', PARITY_NONE], 'parity_check': ['Check parity', True], 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1], 'bit_order': ['Bit order', LSB_FIRST], # TODO: Options to invert the signal(s). } annotations = [ ['ASCII', 'Data bytes as ASCII characters'], ['Decimal', 'Databytes as decimal, integer values'], ['Hex', 'Data bytes in hex format'], ['Octal', 'Data bytes as octal numbers'], ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], ] def putx(self, rxtx, data): self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data) def __init__(self, **kwargs): self.samplenum = 0 self.frame_start = [-1, -1] self.startbit = [-1, -1] self.cur_data_bit = [0, 0] self.databyte = [0, 0] self.stopbit1 = [-1, -1] self.startsample = [-1, -1] # Initial state. self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT] self.oldbit = [None, None] # Set protocol decoder option defaults. self.baudrate = Decoder.options['baudrate'][1] self.num_data_bits = Decoder.options['num_data_bits'][1] self.parity = Decoder.options['parity'][1] self.check_parity = Decoder.options['parity_check'][1] self.num_stop_bits = Decoder.options['num_stop_bits'][1] self.bit_order = Decoder.options['bit_order'][1] def start(self, metadata): self.samplerate = metadata['samplerate'] self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart') self.out_ann = self.add(srd.OUTPUT_ANN, 'uart') # TODO: Override PD options, if user wants that. # The width of one UART bit in number of samples. self.bit_width = float(self.samplerate) / float(self.baudrate) def report(self): pass # Return true if we reached the middle of the desired bit, false otherwise. def reached_bit(self, rxtx, bitnum): # bitpos is the samplenumber which is in the middle of the # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit # (if used) or the first stop bit, and so on). bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0) bitpos += bitnum * self.bit_width if self.samplenum >= bitpos: return True return False def reached_bit_last(self, rxtx, bitnum): bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) if self.samplenum >= bitpos: return True return False def wait_for_start_bit(self, rxtx, old_signal, signal): # The start bit is always 0 (low). As the idle UART (and the stop bit) # level is 1 (high), the beginning of a start bit is a falling edge. if not (old_signal == 1 and signal == 0): return # Save the sample number where the start bit begins. self.frame_start[rxtx] = self.samplenum self.state[rxtx] = GET_START_BIT def get_start_bit(self, rxtx, signal): # Skip samples until we're in the middle of the start bit. if not self.reached_bit(rxtx, 0): return self.startbit[rxtx] = signal # The startbit must be 0. If not, we report an error. if self.startbit[rxtx] != 0: self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, [T_INVALID_START, rxtx, self.startbit[rxtx]]) # TODO: Abort? Ignore rest of the frame? self.cur_data_bit[rxtx] = 0 self.databyte[rxtx] = 0 self.startsample[rxtx] = -1 self.state[rxtx] = GET_DATA_BITS self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, [T_START, rxtx, self.startbit[rxtx]]) self.put(self.frame_start[rxtx], self.samplenum, self.out_ann, [ANN_ASCII, ['Start bit', 'Start', 'S']]) def get_data_bits(self, rxtx, signal): # Skip samples until we're in the middle of the desired data bit. if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): return # Save the sample number where the data byte starts. if self.startsample[rxtx] == -1: self.startsample[rxtx] = self.samplenum # Get the next data bit in LSB-first or MSB-first fashion. if self.bit_order == LSB_FIRST: self.databyte[rxtx] >>= 1 self.databyte[rxtx] |= (signal << (self.num_data_bits - 1)) elif self.bit_order == MSB_FIRST: self.databyte[rxtx] <<= 1 self.databyte[rxtx] |= (signal << 0) else: raise Exception('Invalid bit order value: %d', self.bit_order) # Return here, unless we already received all data bits. if self.cur_data_bit[rxtx] < self.num_data_bits - 1: # TODO? Off-by-one? self.cur_data_bit[rxtx] += 1 return self.state[rxtx] = GET_PARITY_BIT self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto, [T_DATA, rxtx, self.databyte[rxtx]]) s = 'RX: ' if (rxtx == RX) else 'TX: ' self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]]) self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]]) self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]), s + hex(self.databyte[rxtx])[2:]]]) self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]), s + oct(self.databyte[rxtx])[2:]]]) self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]), s + bin(self.databyte[rxtx])[2:]]]) def get_parity_bit(self, rxtx, signal): # If no parity is used/configured, skip to the next state immediately. if self.parity == PARITY_NONE: self.state[rxtx] = GET_STOP_BITS return # Skip samples until we're in the middle of the parity bit. if not self.reached_bit(rxtx, self.num_data_bits + 1): return self.paritybit[rxtx] = signal self.state[rxtx] = GET_STOP_BITS if parity_ok(self.parity[rxtx], self.paritybit[rxtx], self.databyte[rxtx], self.num_data_bits): # TODO: Fix range. self.put(self.samplenum, self.samplenum, self.out_proto, [T_PARITY_BIT, rxtx, self.paritybit[rxtx]]) self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Parity bit', 'Parity', 'P']]) else: # TODO: Fix range. # TODO: Return expected/actual parity values. self.put(self.samplenum, self.samplenum, self.out_proto, [T_PARITY_ERROR, rxtx, (0, 1)]) # FIXME: Dummy tuple... self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Parity error', 'Parity err', 'PE']]) # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, rxtx, signal): # Skip samples until we're in the middle of the stop bit(s). skip_parity = 0 if self.parity == PARITY_NONE else 1 if not self.reached_bit(rxtx, self.num_data_bits + 1 + skip_parity): return self.stopbit1[rxtx] = signal # Stop bits must be 1. If not, we report an error. if self.stopbit1[rxtx] != 1: self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, [T_INVALID_STOP, rxtx, self.stopbit1[rxtx]]) # TODO: Abort? Ignore the frame? Other? self.state[rxtx] = WAIT_FOR_START_BIT # TODO: Fix range. self.put(self.samplenum, self.samplenum, self.out_proto, [T_STOP, rxtx, self.stopbit1[rxtx]]) self.put(self.samplenum, self.samplenum, self.out_ann, [ANN_ASCII, ['Stop bit', 'Stop', 'P']]) def decode(self, ss, es, data): # TODO for (samplenum, (rx, tx)) in data: # TODO: Start counting at 0 or 1? Increase before or after? self.samplenum += 1 # First sample: Save RX/TX value. if self.oldbit[RX] == None: self.oldbit[RX] = rx continue if self.oldbit[TX] == None: self.oldbit[TX] = tx continue # State machine. for rxtx in (RX, TX): signal = rx if (rxtx == RX) else tx if self.state[rxtx] == WAIT_FOR_START_BIT: self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) elif self.state[rxtx] == GET_START_BIT: self.get_start_bit(rxtx, signal) elif self.state[rxtx] == GET_DATA_BITS: self.get_data_bits(rxtx, signal) elif self.state[rxtx] == GET_PARITY_BIT: self.get_parity_bit(rxtx, signal) elif self.state[rxtx] == GET_STOP_BITS: self.get_stop_bits(rxtx, signal) else: raise Exception('Invalid state: %s' % self.state[rxtx]) # Save current RX/TX values for the next round. self.oldbit[rxtx] = signal