## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011-2014 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import bitpack from math import floor, ceil ''' OUTPUT_PYTHON format: Packet: [, , ] This is the list of s and their respective values: - 'STARTBIT': The data is the (integer) value of the start bit (0/1). - 'DATA': This is always a tuple containing two items: - 1st item: the (integer) value of the UART data. Valid values range from 0 to 511 (as the data can be up to 9 bits in size). - 2nd item: the list of individual data bits and their ss/es numbers. - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1). - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1). - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1). - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1). - 'PARITY ERROR': The data is a tuple with two entries. The first one is the expected parity value, the second is the actual parity value. - TODO: Frame error? The field is 0 for RX packets, 1 for TX packets. ''' # Used for differentiating between the two data directions. RX = 0 TX = 1 # Given a parity type to check (odd, even, zero, one), the value of the # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # 'none' is _not_ allowed as value for 'parity_type'. def parity_ok(parity_type, parity_bit, data, num_data_bits): # Handle easy cases first (parity bit is always 1 or 0). if parity_type == 'zero': return parity_bit == 0 elif parity_type == 'one': return parity_bit == 1 # Count number of 1 (high) bits in the data (and the parity bit itself!). ones = bin(data).count('1') + parity_bit # Check for odd/even parity. if parity_type == 'odd': return (ones % 2) == 1 elif parity_type == 'even': return (ones % 2) == 0 class SamplerateError(Exception): pass class ChannelError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'uart' name = 'UART' longname = 'Universal Asynchronous Receiver/Transmitter' desc = 'Asynchronous, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] optional_channels = ( # Allow specifying only one of the signals, e.g. if only one data # direction exists (or is relevant). {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, ) options = ( {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200}, {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8, 'values': (5, 6, 7, 8, 9)}, {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none', 'values': ('none', 'odd', 'even', 'zero', 'one')}, {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes', 'values': ('yes', 'no')}, {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0, 'values': (0.0, 0.5, 1.0, 1.5)}, {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first', 'values': ('lsb-first', 'msb-first')}, {'id': 'format', 'desc': 'Data format', 'default': 'hex', 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')}, {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no', 'values': ('yes', 'no')}, {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no', 'values': ('yes', 'no')}, ) annotations = ( ('rx-data', 'RX data'), ('tx-data', 'TX data'), ('rx-start', 'RX start bits'), ('tx-start', 'TX start bits'), ('rx-parity-ok', 'RX parity OK bits'), ('tx-parity-ok', 'TX parity OK bits'), ('rx-parity-err', 'RX parity error bits'), ('tx-parity-err', 'TX parity error bits'), ('rx-stop', 'RX stop bits'), ('tx-stop', 'TX stop bits'), ('rx-warnings', 'RX warnings'), ('tx-warnings', 'TX warnings'), ('rx-data-bits', 'RX data bits'), ('tx-data-bits', 'TX data bits'), ('rx-break', 'RX break'), ('tx-break', 'TX break'), ) annotation_rows = ( ('rx-data', 'RX', (0, 2, 4, 6, 8)), ('rx-data-bits', 'RX bits', (12,)), ('rx-warnings', 'RX warnings', (10,)), ('rx-break', 'RX break', (14,)), ('tx-data', 'TX', (1, 3, 5, 7, 9)), ('tx-data-bits', 'TX bits', (13,)), ('tx-warnings', 'TX warnings', (11,)), ('tx-break', 'TX break', (15,)), ) binary = ( ('rx', 'RX dump'), ('tx', 'TX dump'), ('rxtx', 'RX/TX dump'), ) idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT'] def putx(self, rxtx, data): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data) def putpx(self, rxtx, data): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data) def putg(self, data): s, halfbit = self.samplenum, self.bit_width / 2.0 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data) def putp(self, data): s, halfbit = self.samplenum, self.bit_width / 2.0 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data) def putgse(self, ss, es, data): self.put(ss, es, self.out_ann, data) def putpse(self, ss, es, data): self.put(ss, es, self.out_python, data) def putbin(self, rxtx, data): s, halfbit = self.startsample[rxtx], self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data) def __init__(self): self.reset() def reset(self): self.samplerate = None self.samplenum = 0 self.frame_start = [-1, -1] self.startbit = [-1, -1] self.cur_data_bit = [0, 0] self.datavalue = [0, 0] self.paritybit = [-1, -1] self.stopbit1 = [-1, -1] self.startsample = [-1, -1] self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT'] self.databits = [[], []] self.break_start = [None, None] def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_ann = self.register(srd.OUTPUT_ANN) self.bw = (self.options['num_data_bits'] + 7) // 8 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # The width of one UART bit in number of samples. self.bit_width = float(self.samplerate) / float(self.options['baudrate']) def get_sample_point(self, rxtx, bitnum): # Determine absolute sample number of a bit slot's sample point. # bitpos is the samplenumber which is in the middle of the # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit # (if used) or the first stop bit, and so on). # The samples within bit are 0, 1, ..., (bit_width - 1), therefore # index of the middle sample within bit window is (bit_width - 1) / 2. bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0 bitpos += bitnum * self.bit_width return bitpos def wait_for_start_bit(self, rxtx, signal): # Save the sample number where the start bit begins. self.frame_start[rxtx] = self.samplenum self.state[rxtx] = 'GET START BIT' def get_start_bit(self, rxtx, signal): self.startbit[rxtx] = signal # The startbit must be 0. If not, we report an error and wait # for the next start bit (assuming this one was spurious). if self.startbit[rxtx] != 0: self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]]) self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']]) self.state[rxtx] = 'WAIT FOR START BIT' return self.cur_data_bit[rxtx] = 0 self.datavalue[rxtx] = 0 self.startsample[rxtx] = -1 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]]) self.putg([rxtx + 2, ['Start bit', 'Start', 'S']]) self.state[rxtx] = 'GET DATA BITS' def get_data_bits(self, rxtx, signal): # Save the sample number of the middle of the first data bit. if self.startsample[rxtx] == -1: self.startsample[rxtx] = self.samplenum self.putg([rxtx + 12, ['%d' % signal]]) # Store individual data bits and their start/end samplenumbers. s, halfbit = self.samplenum, int(self.bit_width / 2) self.databits[rxtx].append([signal, s - halfbit, s + halfbit]) # Return here, unless we already received all data bits. self.cur_data_bit[rxtx] += 1 if self.cur_data_bit[rxtx] < self.options['num_data_bits']: return # Convert accumulated data bits to a data value. bits = [b[0] for b in self.databits[rxtx]] if self.options['bit_order'] == 'msb-first': bits.reverse() self.datavalue[rxtx] = bitpack(bits) self.putpx(rxtx, ['DATA', rxtx, (self.datavalue[rxtx], self.databits[rxtx])]) b = self.datavalue[rxtx] formatted = self.format_value(b) if formatted is not None: self.putx(rxtx, [rxtx, [formatted]]) bdata = b.to_bytes(self.bw, byteorder='big') self.putbin(rxtx, [rxtx, bdata]) self.putbin(rxtx, [2, bdata]) self.databits[rxtx] = [] # Advance to either reception of the parity bit, or reception of # the STOP bits if parity is not applicable. self.state[rxtx] = 'GET PARITY BIT' if self.options['parity_type'] == 'none': self.state[rxtx] = 'GET STOP BITS' def format_value(self, v): # Format value 'v' according to configured options. # Reflects the user selected kind of representation, as well as # the number of data bits in the UART frames. fmt, bits = self.options['format'], self.options['num_data_bits'] # Assume "is printable" for values from 32 to including 126, # below 32 is "control" and thus not printable, above 127 is # "not ASCII" in its strict sense, 127 (DEL) is not printable, # fall back to hex representation for non-printables. if fmt == 'ascii': if v in range(32, 126 + 1): return chr(v) hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]" return hexfmt.format(v) # Mere number to text conversion without prefix and padding # for the "decimal" output format. if fmt == 'dec': return "{:d}".format(v) # Padding with leading zeroes for hex/oct/bin formats, but # without a prefix for density -- since the format is user # specified, there is no ambiguity. if fmt == 'hex': digits = (bits + 4 - 1) // 4 fmtchar = "X" elif fmt == 'oct': digits = (bits + 3 - 1) // 3 fmtchar = "o" elif fmt == 'bin': digits = bits fmtchar = "b" else: fmtchar = None if fmtchar is not None: fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar) return fmt.format(v) return None def get_parity_bit(self, rxtx, signal): self.paritybit[rxtx] = signal if parity_ok(self.options['parity_type'], self.paritybit[rxtx], self.datavalue[rxtx], self.options['num_data_bits']): self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]]) self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']]) else: # TODO: Return expected/actual parity values. self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple... self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']]) self.state[rxtx] = 'GET STOP BITS' # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, rxtx, signal): self.stopbit1[rxtx] = signal # Stop bits must be 1. If not, we report an error. if self.stopbit1[rxtx] != 1: self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]]) self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']]) # TODO: Abort? Ignore the frame? Other? self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]]) self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']]) self.state[rxtx] = 'WAIT FOR START BIT' def handle_break(self, rxtx): self.putpse(self.frame_start[rxtx], self.samplenum, ['BREAK', rxtx, 0]) self.putgse(self.frame_start[rxtx], self.samplenum, [rxtx + 14, ['Break condition', 'Break', 'Brk', 'B']]) self.state[rxtx] = 'WAIT FOR START BIT' def get_wait_cond(self, rxtx, inv): # Return condititions that are suitable for Decoder.wait(). Those # conditions either match the falling edge of the START bit, or # the sample point of the next bit time. state = self.state[rxtx] if state == 'WAIT FOR START BIT': return {rxtx: 'r' if inv else 'f'} if state == 'GET START BIT': bitnum = 0 elif state == 'GET DATA BITS': bitnum = 1 + self.cur_data_bit[rxtx] elif state == 'GET PARITY BIT': bitnum = 1 + self.options['num_data_bits'] elif state == 'GET STOP BITS': bitnum = 1 + self.options['num_data_bits'] bitnum += 0 if self.options['parity_type'] == 'none' else 1 want_num = ceil(self.get_sample_point(rxtx, bitnum)) return {'skip': want_num - self.samplenum} def inspect_sample(self, rxtx, signal, inv): # Inspect a sample returned by .wait() for the specified UART line. if inv: signal = not signal state = self.state[rxtx] if state == 'WAIT FOR START BIT': self.wait_for_start_bit(rxtx, signal) elif state == 'GET START BIT': self.get_start_bit(rxtx, signal) elif state == 'GET DATA BITS': self.get_data_bits(rxtx, signal) elif state == 'GET PARITY BIT': self.get_parity_bit(rxtx, signal) elif state == 'GET STOP BITS': self.get_stop_bits(rxtx, signal) def inspect_edge(self, rxtx, signal, inv): # Inspect edges, independently from traffic, to detect break conditions. if inv: signal = not signal if not signal: # Signal went low. Start another interval. self.break_start[rxtx] = self.samplenum return # Signal went high. Was there an extended period with low signal? if self.break_start[rxtx] is None: return diff = self.samplenum - self.break_start[rxtx] if diff >= self.break_min_sample_count: self.handle_break(rxtx) self.break_start[rxtx] = None def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') has_pin = [self.has_channel(ch) for ch in (RX, TX)] if has_pin == [False, False]: raise ChannelError('Either TX or RX (or both) pins required.') opt = self.options inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes'] cond_data_idx = [None] * len(has_pin) # Determine the number of samples for a complete frame's time span. # A period of low signal (at least) that long is a break condition. frame_samples = 1 # START frame_samples += self.options['num_data_bits'] frame_samples += 0 if self.options['parity_type'] == 'none' else 1 frame_samples += self.options['num_stop_bits'] frame_samples *= self.bit_width self.break_min_sample_count = ceil(frame_samples) cond_edge_idx = [None] * len(has_pin) while True: conds = [] if has_pin[RX]: cond_data_idx[RX] = len(conds) conds.append(self.get_wait_cond(RX, inv[RX])) cond_edge_idx[RX] = len(conds) conds.append({RX: 'e'}) if has_pin[TX]: cond_data_idx[TX] = len(conds) conds.append(self.get_wait_cond(TX, inv[TX])) cond_edge_idx[TX] = len(conds) conds.append({TX: 'e'}) (rx, tx) = self.wait(conds) if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]: self.inspect_sample(RX, rx, inv[RX]) if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]: self.inspect_edge(RX, rx, inv[RX]) if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]: self.inspect_sample(TX, tx, inv[TX]) if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]: self.inspect_edge(TX, tx, inv[TX])