## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2014 Torsten Duwe <duwe@suse.de> ## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see <http://www.gnu.org/licenses/>. ## import sigrokdecode as srd from collections import deque class SamplerateError(Exception): pass def normalize_time(t): if abs(t) >= 1.0: return '%.3f s (%.3f Hz)' % (t, (1/t)) elif abs(t) >= 0.001: if 1/t/1000 < 1: return '%.3f ms (%.3f Hz)' % (t * 1000.0, (1/t)) else: return '%.3f ms (%.3f kHz)' % (t * 1000.0, (1/t)/1000) elif abs(t) >= 0.000001: if 1/t/1000/1000 < 1: return '%.3f μs (%.3f kHz)' % (t * 1000.0 * 1000.0, (1/t)/1000) else: return '%.3f μs (%.3f MHz)' % (t * 1000.0 * 1000.0, (1/t)/1000/1000) elif abs(t) >= 0.000000001: if 1/t/1000/1000/1000: return '%.3f ns (%.3f MHz)' % (t * 1000.0 * 1000.0 * 1000.0, (1/t)/1000/1000) else: return '%.3f ns (%.3f GHz)' % (t * 1000.0 * 1000.0 * 1000.0, (1/t)/1000/1000/1000) else: return '%f' % t def terse_times(t, fmt): # Strictly speaking these variants are not used in the current # implementation, but can reduce diffs during future maintenance. if fmt == 'full': return [normalize_time(t)] # End of "forward compatibility". if fmt == 'samples': # See below. No unit text, on purpose. return ['{:d}'.format(t)] # Use caller specified scale, or automatically find one. scale, unit = None, None if fmt == 'terse-auto': if abs(t) >= 1e0: scale, unit = 1e0, 's' elif abs(t) >= 1e-3: scale, unit = 1e3, 'ms' elif abs(t) >= 1e-6: scale, unit = 1e6, 'us' elif abs(t) >= 1e-9: scale, unit = 1e9, 'ns' elif abs(t) >= 1e-12: scale, unit = 1e12, 'ps' # Beware! Uses unit-less text when the user picked the scale. For # more consistent output with less clutter, thus faster navigation # by humans. Can also un-hide text at higher distance zoom levels. elif fmt == 'terse-s': scale, unit = 1e0, '' elif fmt == 'terse-ms': scale, unit = 1e3, '' elif fmt == 'terse-us': scale, unit = 1e6, '' elif fmt == 'terse-ns': scale, unit = 1e9, '' elif fmt == 'terse-ps': scale, unit = 1e12, '' if scale: t *= scale return ['{:.0f}{}'.format(t, unit), '{:.0f}'.format(t)] # Unspecified format, and nothing auto-detected. return ['{:f}'.format(t)] class Pin: (DATA,) = range(1) class Ann: (TIME, TERSE, AVG, DELTA,) = range(4) class Decoder(srd.Decoder): api_version = 3 id = 'timing' name = 'Timing' longname = 'Timing calculation with frequency and averaging' desc = 'Calculate time between edges.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['Clock/timing', 'Util'] channels = ( {'id': 'data', 'name': 'Data', 'desc': 'Data line'}, ) annotations = ( ('time', 'Time'), ('terse', 'Terse'), ('average', 'Average'), ('delta', 'Delta'), ) annotation_rows = ( ('times', 'Times', (Ann.TIME, Ann.TERSE,)), ('averages', 'Averages', (Ann.AVG,)), ('deltas', 'Deltas', (Ann.DELTA,)), ) options = ( { 'id': 'avg_period', 'desc': 'Averaging period', 'default': 100 }, { 'id': 'edge', 'desc': 'Edges to check', 'default': 'any', 'values': ('any', 'rising', 'falling') }, { 'id': 'delta', 'desc': 'Show delta from last', 'default': 'no', 'values': ('yes', 'no') }, { 'id': 'format', 'desc': 'Format of \'time\' annotation', 'default': 'full', 'values': ('full', 'terse-auto', 'terse-s', 'terse-ms', 'terse-us', 'terse-ns', 'terse-ps', 'samples') }, ) def __init__(self): self.reset() def reset(self): self.samplerate = None def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') edge = self.options['edge'] avg_period = self.options['avg_period'] delta = self.options['delta'] == 'yes' fmt = self.options['format'] ss = None last_n = deque() last_t = None while True: if edge == 'rising': pin = self.wait({Pin.DATA: 'r'}) elif edge == 'falling': pin = self.wait({Pin.DATA: 'f'}) else: pin = self.wait({Pin.DATA: 'e'}) if not ss: ss = self.samplenum continue es = self.samplenum sa = es - ss t = sa / self.samplerate if fmt == 'full': cls, txt = Ann.TIME, [normalize_time(t)] elif fmt == 'samples': cls, txt = Ann.TERSE, terse_times(sa, fmt) else: cls, txt = Ann.TERSE, terse_times(t, fmt) if txt: self.put(ss, es, self.out_ann, [cls, txt]) if avg_period > 0: if t > 0: last_n.append(t) if len(last_n) > avg_period: last_n.popleft() average = sum(last_n) / len(last_n) cls, txt = Ann.AVG, normalize_time(average) self.put(ss, es, self.out_ann, [cls, [txt]]) if last_t and delta: cls, txt = Ann.DELTA, normalize_time(t - last_t) self.put(ss, es, self.out_ann, [cls, [txt]]) last_t = t ss = es