## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2015 Benjamin Larsson ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 2 id = 't55xx' name = 'T55xx' longname = 'RFID T55xx' desc = 'T55xx 100-150kHz RFID protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['t55xx'] channels = ( {'id': 'data', 'name': 'Data', 'desc': 'Data line'}, ) options = ( {'id': 'coilfreq', 'desc': 'Coil frequency', 'default': 125000}, {'id': 'start_gap', 'desc': 'Start gap min', 'default': 20}, {'id': 'w_gap', 'desc': 'Write gap min', 'default': 20}, {'id': 'w_one_min', 'desc': 'Write one min', 'default': 48}, {'id': 'w_one_max', 'desc': 'Write one max', 'default': 63}, {'id': 'w_zero_min', 'desc': 'Write zero min', 'default': 16}, {'id': 'w_zero_max', 'desc': 'Write zero max', 'default': 31}, {'id': 'em4100_decode', 'desc': 'EM4100 decode', 'default': 'on', 'values': ('on', 'off')}, ) annotations = ( ('bit_value', 'Bit value'), ('start_gap', 'Start gap'), ('write_gap', 'Write gap'), ('write_mode_exit', 'Write mode exit'), ('bit', 'Bit'), ('opcode', 'Opcode'), ('lock', 'Lock'), ('data', 'Data'), ('password', 'Password'), ('address', 'Address'), ('bitrate', 'Bitrate'), ) annotation_rows = ( ('bits', 'Bits', (0,)), ('structure', 'Structure', (1, 2, 3, 4)), ('fields', 'Fields', (5, 6, 7, 8, 9)), ('decode', 'Decode', (10,)), ) def __init__(self, **kwargs): self.samplerate = None self.oldpin = None self.last_samplenum = None self.lastlast_samplenum = None self.state = 'START_GAP' self.bits_pos = [[0 for col in range(3)] for row in range(70)] self.br_string = ['RF/8', 'RF/16', 'RF/32', 'RF/40', 'RF/50', 'RF/64', 'RF/100', 'RF/128'] self.mod_str1 = ['Direct', 'Manchester', 'Biphase', 'Reserved'] self.mod_str2 = ['Direct', 'PSK1', 'PSK2', 'PSK3', 'FSK1', 'FSK2', 'FSK1a', 'FSK2a'] self.pskcf_str = ['RF/2', 'RF/4', 'RF/8', 'Reserved'] self.em4100_decode1_partial = 0 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value self.field_clock = self.samplerate / self.options['coilfreq'] self.wzmax = self.options['w_zero_max'] * self.field_clock self.wzmin = self.options['w_zero_min'] * self.field_clock self.womax = self.options['w_one_max'] * self.field_clock self.womin = self.options['w_one_min'] * self.field_clock self.startgap = self.options['start_gap'] * self.field_clock self.writegap = self.options['w_gap'] * self.field_clock self.nogap = 64 * self.field_clock def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def decode_config(self, idx): safer_key = self.bits_pos[idx][0]<<3 | self.bits_pos[idx+1][0]<<2 | \ self.bits_pos[idx+2][0]<<1 | self.bits_pos[idx+3][0] self.put(self.bits_pos[idx][1], self.bits_pos[idx+3][2], self.out_ann, [10, ['Safer Key' + ': %X' % safer_key,'%X' % safer_key]]) bitrate = self.bits_pos[idx+11][0]<<2 | self.bits_pos[idx+12][0]<<1 | \ self.bits_pos[idx+13][0] self.put(self.bits_pos[idx+11][1], self.bits_pos[idx+13][2], self.out_ann, [10, ['Data Bit Rate: ' + \ self.br_string[bitrate], self.br_string[bitrate]]]) modulation1 = self.bits_pos[idx+15][0]<<1 | self.bits_pos[idx+16][0] modulation2 = self.bits_pos[idx+17][0]<<2 | \ self.bits_pos[idx+18][0]<<1 | self.bits_pos[idx+19][0] if modulation1 == 0: mod_string = self.mod_str2[modulation2] else: mod_string = self.mod_str1[modulation1] self.put(self.bits_pos[idx+15][1], self.bits_pos[idx+19][2], self.out_ann, [10, ['Modulation: ' + mod_string, mod_string]]) psk_cf = self.bits_pos[idx+20][0]<<1 | self.bits_pos[idx+21][0] self.put(self.bits_pos[idx+20][1], self.bits_pos[idx+21][2], self.out_ann, [10, ['PSK-CF: ' + self.pskcf_str[psk_cf], self.pskcf_str[psk_cf]]]) self.put(self.bits_pos[idx+22][1], self.bits_pos[idx+22][2], self.out_ann, [10, ['AOR' + ': %d' % \ (self.bits_pos[idx+22][0]),'%d' % (self.bits_pos[idx+22][0])]]) maxblock = self.bits_pos[idx+24][0]<<2 | self.bits_pos[idx+25][0]<<1 | \ self.bits_pos[idx+26][0] self.put(self.bits_pos[idx+24][1], self.bits_pos[idx+26][2], self.out_ann, [10, ['Max-Block' + ': %d' % maxblock, '%d' % maxblock]]) self.put(self.bits_pos[idx+27][1], self.bits_pos[idx+27][2], self.out_ann, [10, ['PWD' + ': %d' % \ (self.bits_pos[idx+27][0]),'%d' % (self.bits_pos[idx+27][0])]]) self.put(self.bits_pos[idx+28][1], self.bits_pos[idx+28][2], self.out_ann, [10, ['ST-sequence terminator' + ': %d' % \ (self.bits_pos[idx+28][0]),'%d' % (self.bits_pos[idx+28][0])]]) self.put(self.bits_pos[idx+31][1], self.bits_pos[idx+31][2], self.out_ann, [10, ['POR delay' + ': %d' % \ (self.bits_pos[idx+31][0]),'%d' % (self.bits_pos[idx+31][0])]]) def put4bits(self, idx): bits = self.bits_pos[idx][0]<<3 | self.bits_pos[idx+1][0]<<2 | \ self.bits_pos[idx+2][0]<<1 | self.bits_pos[idx+3][0] self.put(self.bits_pos[idx][1], self.bits_pos[idx+3][2], self.out_ann, [10, ['%X' % bits]]) def em4100_decode1(self, idx): self.put(self.bits_pos[idx][1], self.bits_pos[idx+8][2], self.out_ann, [10, ['EM4100 header', 'EM header', 'Header', 'H']]) self.put4bits(idx+9) self.put4bits(idx+14) self.put4bits(idx+19) self.put4bits(idx+24) self.em4100_decode1_partial = self.bits_pos[idx+29][0]<<3 | \ self.bits_pos[idx+30][0]<<2 | self.bits_pos[idx+31][0]<<1 self.put(self.bits_pos[idx+29][1], self.bits_pos[idx+31][2], self.out_ann, [10, ['Partial nibble']]) def em4100_decode2(self, idx): if self.em4100_decode1_partial != 0: bits = self.em4100_decode1_partial + self.bits_pos[idx][0] self.put(self.bits_pos[idx][1], self.bits_pos[idx][2], self.out_ann, [10, ['%X' % bits]]) self.em4100_decode1_partial = 0 else: self.put(self.bits_pos[idx][1], self.bits_pos[idx][2], self.out_ann, [10, ['Partial nibble']]) self.put4bits(idx+2) self.put4bits(idx+7) self.put4bits(idx+12) self.put4bits(idx+17) self.put4bits(idx+22) self.put(self.bits_pos[idx+27][1], self.bits_pos[idx+31][2], self.out_ann, [10, ['EM4100 trailer']]) def get_32_bits(self, idx): retval = 0 for i in range(0, 32): retval <<= 1 retval |= self.bits_pos[i+idx][0] return retval def get_3_bits(self, idx): retval = self.bits_pos[idx][0]<<2 | self.bits_pos[idx+1][0]<<1 | \ self.bits_pos[idx+2][0] return retval def put_fields(self): if (self.bit_nr == 70): self.put(self.bits_pos[0][1], self.bits_pos[1][2], self.out_ann, [5, ['Opcode' + ': %d%d' % (self.bits_pos[0][0], self.bits_pos[1][0]), '%d%d' % (self.bits_pos[0][0], self.bits_pos[1][0])]]) password = self.get_32_bits(2) self.put(self.bits_pos[2][1], self.bits_pos[33][2], self.out_ann, [8, ['Password' + ': %X' % password, '%X' % password]]) self.put(self.bits_pos[34][1], self.bits_pos[34][2], self.out_ann, [6, ['Lock' + ': %X' % self.bits_pos[34][0], '%X' % self.bits_pos[34][0]]]) data = self.get_32_bits(35) self.put(self.bits_pos[35][1], self.bits_pos[66][2], self.out_ann, [7, ['Data' + ': %X' % data, '%X' % data]]) addr = self.get_3_bits(67) self.put(self.bits_pos[67][1], self.bits_pos[69][2], self.out_ann, [9, ['Addr' + ': %X' % addr, '%X' % addr]]) if addr == 0: self.decode_config(35) if addr == 7: self.put(self.bits_pos[35][1], self.bits_pos[66][2], self.out_ann, [10, ['Password' + ': %X' % data, '%X' % data]]) # If we are programming EM4100 data we can decode it halfway. if addr == 1 and self.options['em4100_decode'] == 'on': self.em4100_decode1(35) if addr == 2 and self.options['em4100_decode'] == 'on': self.em4100_decode2(35) if (self.bit_nr == 38): self.put(self.bits_pos[0][1], self.bits_pos[1][2], self.out_ann, [5, ['Opcode' + ': %d%d' % (self.bits_pos[0][0], self.bits_pos[1][0]), '%d%d' % (self.bits_pos[0][0], self.bits_pos[1][0])]]) self.put(self.bits_pos[2][1], self.bits_pos[2][2], self.out_ann, [6, ['Lock' + ': %X' % self.bits_pos[2][0], '%X' % self.bits_pos[2][0]]]) data = self.get_32_bits(3) self.put(self.bits_pos[3][1], self.bits_pos[34][2], self.out_ann, [7, ['Data' + ': %X' % data, '%X' % data]]) addr = self.get_3_bits(35) self.put(self.bits_pos[35][1], self.bits_pos[37][2], self.out_ann, [9, ['Addr' + ': %X' % addr, '%X' % addr]]) if addr == 0: self.decode_config(3) if addr == 7: self.put(self.bits_pos[3][1], self.bits_pos[34][2], self.out_ann, [10, ['Password' + ': %X' % data, '%X' % data]]) # If we are programming EM4100 data we can decode it halfway. if addr == 1 and self.options['em4100_decode'] == 'on': self.em4100_decode1(3) if addr == 2 and self.options['em4100_decode'] == 'on': self.em4100_decode2(3) if (self.bit_nr == 2): self.put(self.bits_pos[0][1], self.bits_pos[1][2], self.out_ann, [5, ['Opcode' + ': %d%d' % (self.bits_pos[0][0], self.bits_pos[1][0]), '%d%d' % (self.bits_pos[0][0], self.bits_pos[1][0])]]) self.bit_nr = 0 def add_bits_pos(self, bit, bit_start, bit_end): if self.bit_nr < 70: self.bits_pos[self.bit_nr][0] = bit self.bits_pos[self.bit_nr][1] = bit_start self.bits_pos[self.bit_nr][2] = bit_end self.bit_nr += 1 def decode(self, ss, es, data): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') for (self.samplenum, (pin,)) in data: # Ignore identical samples early on (for performance reasons). if self.oldpin == pin: continue if self.oldpin is None: self.oldpin = pin self.last_samplenum = self.samplenum self.lastlast_samplenum = self.samplenum self.last_edge = self.samplenum self.oldpl = 0 self.oldpp = 0 self.oldsamplenum = 0 self.last_bit_pos = 0 self.old_gap_start = 0 self.old_gap_end = 0 self.gap_detected = 0 self.bit_nr = 0 continue if self.oldpin != pin: pl = self.samplenum - self.oldsamplenum pp = pin samples = self.samplenum - self.last_samplenum if self.state == 'WRITE_GAP': if pl > self.writegap: self.gap_detected = 1 self.put(self.last_samplenum, self.samplenum, self.out_ann, [2, ['Write gap']]) if (self.last_samplenum-self.old_gap_end) > self.nogap: self.gap_detected = 0 self.state = 'START_GAP' self.put(self.old_gap_end, self.last_samplenum, self.out_ann, [3, ['Write mode exit']]) self.put_fields() if self.state == 'START_GAP': if pl > self.startgap: self.gap_detected = 1 self.put(self.last_samplenum, self.samplenum, self.out_ann, [1, ['Start gap']]) self.state = 'WRITE_GAP' if self.gap_detected == 1: self.gap_detected = 0 if (self.last_samplenum - self.old_gap_end) > self.wzmin \ and (self.last_samplenum - self.old_gap_end) < self.wzmax: self.put(self.old_gap_end, self.last_samplenum, self.out_ann, [0, ['0']]) self.put(self.old_gap_end, self.last_samplenum, self.out_ann, [4, ['Bit']]) self.add_bits_pos(0, self.old_gap_end, self.last_samplenum) if (self.last_samplenum - self.old_gap_end) > self.womin \ and (self.last_samplenum - self.old_gap_end) < self.womax: self.put(self.old_gap_end, self.last_samplenum, self.out_ann, [0, ['1']]) self.put(self.old_gap_end, self.last_samplenum, self.out_ann, [4, ['Bit']]) self.add_bits_pos(1, self.old_gap_end, self.last_samplenum) self.old_gap_start = self.last_samplenum self.old_gap_end = self.samplenum self.oldpl = pl self.oldpp = pp self.oldsamplenum = self.samplenum self.last_samplenum = self.samplenum self.oldpin = pin