## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011-2015 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd from .lists import * def cmd_annotation_classes(): return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()]) def decode_dual_bytes(sio0, sio1): # Given a byte in SIO0 (MOSI) of even bits and a byte in # SIO1 (MISO) of odd bits, return a tuple of two bytes. def combine_byte(even, odd): result = 0 for bit in range(4): if even & (1 << bit): result |= 1 << (bit*2) if odd & (1 << bit): result |= 1 << ((bit*2) + 1) return result return (combine_byte(sio0 >> 4, sio1 >> 4), combine_byte(sio0, sio1)) def decode_status_reg(data): # TODO: Additional per-bit(s) self.put() calls with correct start/end. # Bits[0:0]: WIP (write in progress) s = 'W' if (data & (1 << 0)) else 'No w' ret = '%srite operation in progress.\n' % s # Bits[1:1]: WEL (write enable latch) s = '' if (data & (1 << 1)) else 'not ' ret += 'Internal write enable latch is %sset.\n' % s # Bits[5:2]: Block protect bits # TODO: More detailed decoding (chip-dependent). ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2) # Bits[6:6]: Continuously program mode (CP mode) s = '' if (data & (1 << 6)) else 'not ' ret += 'Device is %sin continuously program mode (CP mode).\n' % s # Bits[7:7]: SRWD (status register write disable) s = 'not ' if (data & (1 << 7)) else '' ret += 'Status register writes are %sallowed.\n' % s return ret class Decoder(srd.Decoder): api_version = 2 id = 'spiflash' name = 'SPI flash' longname = 'SPI flash chips' desc = 'xx25 series SPI (NOR) flash chip protocol.' license = 'gplv2+' inputs = ['spi'] outputs = ['spiflash'] annotations = cmd_annotation_classes() + ( ('bits', 'Bits'), ('bits2', 'Bits2'), ('warnings', 'Warnings'), ) annotation_rows = ( ('bits', 'Bits', (24, 25)), ('commands', 'Commands', tuple(range(23 + 1))), ('warnings', 'Warnings', (26,)), ) options = ( {'id': 'chip', 'desc': 'Chip', 'default': tuple(chips.keys())[0], 'values': tuple(chips.keys())}, ) def __init__(self): self.on_end_transaction = None self.end_current_transaction() def end_current_transaction(self): if self.on_end_transaction is not None: # Callback for CS# transition. self.on_end_transaction() self.on_end_transaction = None self.state = None self.cmdstate = 1 self.addr = 0 self.data = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.chip = chips[self.options['chip']] def putx(self, data): # Simplification, most annotations span exactly one SPI byte/packet. self.put(self.ss, self.es, self.out_ann, data) def putb(self, data): self.put(self.ss_block, self.es_block, self.out_ann, data) def handle_wren(self, mosi, miso): self.putx([0, ['Command: %s' % cmds[self.state][1]]]) self.state = None def handle_wrdi(self, mosi, miso): pass # TODO # TODO: Check/display device ID / name def handle_rdid(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.ss_block = self.ss self.putx([2, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate == 2: # Byte 2: Slave sends the JEDEC manufacturer ID. self.putx([2, ['Manufacturer ID: 0x%02x' % miso]]) elif self.cmdstate == 3: # Byte 3: Slave sends the memory type (0x20 for this chip). self.putx([2, ['Memory type: 0x%02x' % miso]]) elif self.cmdstate == 4: # Byte 4: Slave sends the device ID. self.device_id = miso self.putx([2, ['Device ID: 0x%02x' % miso]]) if self.cmdstate == 4: # TODO: Check self.device_id is valid & exists in device_names. # TODO: Same device ID? Check! d = 'Device: Macronix %s' % device_name[self.device_id] self.put(self.ss_block, self.es, self.out_ann, [0, [d]]) self.state = None else: self.cmdstate += 1 def handle_rdsr(self, mosi, miso): # Read status register: Master asserts CS#, sends RDSR command, # reads status register byte. If CS# is kept asserted, the status # register can be read continuously / multiple times in a row. # When done, the master de-asserts CS# again. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([3, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate >= 2: # Bytes 2-x: Slave sends status register as long as master clocks. self.putx([24, ['Status register: 0x%02x' % miso]]) self.putx([25, [decode_status_reg(miso)]]) self.cmdstate += 1 def handle_wrsr(self, mosi, miso): pass # TODO def handle_read(self, mosi, miso): # Read data bytes: Master asserts CS#, sends READ command, sends # 3-byte address, reads >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([5, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends read address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Read address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: self.putx([24, ['Read address: 0x%06x' % self.addr]]) self.addr = 0 elif self.cmdstate >= 5: # Bytes 5-x: Master reads data bytes (until CS# de-asserted). if self.cmdstate == 5: self.ss_block = self.ss self.on_end_transaction = lambda: self.output_data_block('Read') self.data.append(miso) self.cmdstate += 1 def handle_fast_read(self, mosi, miso): # Fast read: Master asserts CS#, sends FAST READ command, sends # 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([5, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends read address (24bits, MSB-first). self.putx([24, ['AD%d: 0x%02x' % (self.cmdstate - 1, mosi)]]) if self.cmdstate == 2: self.ss_block = self.ss self.addr |= (mosi << ((4 - self.cmdstate) * 8)) elif self.cmdstate == 5: self.putx([24, ['Dummy byte: 0x%02x' % mosi]]) self.es_block = self.es self.putb([5, ['Read address: 0x%06x' % self.addr]]) self.addr = 0 elif self.cmdstate >= 6: # Bytes 6-x: Master reads data bytes (until CS# de-asserted). if self.cmdstate == 6: self.ss_block = self.ss self.on_end_transaction = lambda: self.output_data_block('Read') self.data.append(miso) self.cmdstate += 1 def handle_2read(self, mosi, miso): # Fast read dual I/O: Same as fast read, but all data # after the command is sent via two I/O pins. # MOSI = SIO0 = even bits, MISO = SIO1 = odd bits. # Recombine the bytes and pass them up to the handle_fast_read command. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([5, ['Command: %s' % cmds[self.state][1]]]) self.cmdstate = 2 else: # Dual I/O mode. a, b = decode_dual_bytes(mosi, miso) # Pass same byte in as both MISO & MOSI, parser state determines # which one it cares about. self.handle_fast_read(a, a) self.handle_fast_read(b, b) # TODO: Warn/abort if we don't see the necessary amount of bytes. # TODO: Warn if WREN was not seen before. def handle_se(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.addr = 0 self.ss_block = self.ss self.putx([8, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends sector address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Sector address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr) self.put(self.ss_block, self.es, self.out_ann, [24, [d]]) # TODO: Max. size depends on chip, check that too if possible. if self.addr % 4096 != 0: # Sector addresses must be 4K-aligned (same for all 3 chips). d = 'Warning: Invalid sector address!' self.put(self.ss_block, self.es, self.out_ann, [101, [d]]) self.state = None else: self.cmdstate += 1 def handle_be(self, mosi, miso): pass # TODO def handle_ce(self, mosi, miso): pass # TODO def handle_ce2(self, mosi, miso): pass # TODO def handle_pp(self, mosi, miso): # Page program: Master asserts CS#, sends PP command, sends 3-byte # page address, sends >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([12, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends page address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Page address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: self.putx([24, ['Page address: 0x%06x' % self.addr]]) self.addr = 0 elif self.cmdstate >= 5: # Bytes 5-x: Master sends data bytes (until CS# de-asserted). if self.cmdstate == 5: self.ss_block = self.ss self.on_end_transaction = lambda: self.output_data_block('Page data') self.data.append(mosi) self.cmdstate += 1 def handle_cp(self, mosi, miso): pass # TODO def handle_dp(self, mosi, miso): pass # TODO def handle_rdp_res(self, mosi, miso): pass # TODO def handle_rems(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.ss_block = self.ss self.putx([16, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3): # Bytes 2/3: Master sends two dummy bytes. # TODO: Check dummy bytes? Check reply from device? self.putx([24, ['Dummy byte: %s' % mosi]]) elif self.cmdstate == 4: # Byte 4: Master sends 0x00 or 0x01. # 0x00: Master wants manufacturer ID as first reply byte. # 0x01: Master wants device ID as first reply byte. self.manufacturer_id_first = True if (mosi == 0x00) else False d = 'manufacturer' if (mosi == 0x00) else 'device' self.putx([24, ['Master wants %s ID first' % d]]) elif self.cmdstate == 5: # Byte 5: Slave sends manufacturer ID (or device ID). self.ids = [miso] d = 'Manufacturer' if self.manufacturer_id_first else 'Device' self.putx([24, ['%s ID' % d]]) elif self.cmdstate == 6: # Byte 6: Slave sends device ID (or manufacturer ID). self.ids.append(miso) d = 'Manufacturer' if self.manufacturer_id_first else 'Device' self.putx([24, ['%s ID' % d]]) if self.cmdstate == 6: id = self.ids[1] if self.manufacturer_id_first else self.ids[0] self.putx([24, ['Device: Macronix %s' % device_name[id]]]) self.state = None else: self.cmdstate += 1 def handle_rems2(self, mosi, miso): pass # TODO def handle_enso(self, mosi, miso): pass # TODO def handle_exso(self, mosi, miso): pass # TODO def handle_rdscur(self, mosi, miso): pass # TODO def handle_wrscur(self, mosi, miso): pass # TODO def handle_esry(self, mosi, miso): pass # TODO def handle_dsry(self, mosi, miso): pass # TODO def output_data_block(self, label): # Print accumulated block of data # (called on CS# de-assert via self.on_end_transaction callback). self.es_block = self.es # Ends on the CS# de-assert sample. s = ' '.join([('%02x' % b) for b in self.data]) self.putb([25, ['%s %d bytes: %s' % (label, len(self.data), s)]]) def decode(self, ss, es, data): ptype, mosi, miso = data self.ss, self.es = ss, es if ptype == 'CS-CHANGE': self.end_current_transaction() if ptype != 'DATA': return # If we encountered a known chip command, enter the resp. state. if self.state is None: self.state = mosi self.cmdstate = 1 # Handle commands. if self.state in cmds: s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_') handle_reg = getattr(self, s) handle_reg(mosi, miso) else: self.putx([24, ['Unknown command: 0x%02x' % mosi]]) self.state = None