## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012-2014 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd # Normal commands (CMD) cmd_names = { 0: 'GO_IDLE_STATE', 1: 'SEND_OP_COND', 6: 'SWITCH_FUNC', 8: 'SEND_IF_COND', 9: 'SEND_CSD', 10: 'SEND_CID', 12: 'STOP_TRANSMISSION', 13: 'SEND_STATUS', 16: 'SET_BLOCKLEN', 17: 'READ_SINGLE_BLOCK', 18: 'READ_MULTIPLE_BLOCK', 24: 'WRITE_BLOCK', 25: 'WRITE_MULTIPLE_BLOCK', 27: 'PROGRAM_CSD', 28: 'SET_WRITE_PROT', 29: 'CLR_WRITE_PROT', 30: 'SEND_WRITE_PROT', 32: 'ERASE_WR_BLK_START_ADDR', 33: 'ERASE_WR_BLK_END_ADDR', 38: 'ERASE', 42: 'LOCK_UNLOCK', 55: 'APP_CMD', 56: 'GEN_CMD', 58: 'READ_OCR', 59: 'CRC_ON_OFF', # CMD60-63: Reserved for manufacturer } # Application-specific commands (ACMD) acmd_names = { 13: 'SD_STATUS', 18: 'Reserved for SD security applications', 22: 'SEND_NUM_WR_BLOCKS', 23: 'SET_WR_BLK_ERASE_COUNT', 25: 'Reserved for SD security applications', 26: 'Reserved for SD security applications', 38: 'Reserved for SD security applications', 41: 'SD_SEND_OP_COND', 42: 'SET_CLR_CARD_DETECT', 43: 'Reserved for SD security applications', 44: 'Reserved for SD security applications', 45: 'Reserved for SD security applications', 46: 'Reserved for SD security applications', 47: 'Reserved for SD security applications', 48: 'Reserved for SD security applications', 49: 'Reserved for SD security applications', 51: 'SEND_SCR', } class Decoder(srd.Decoder): api_version = 2 id = 'sdcard_spi' name = 'SD card (SPI mode)' longname = 'Secure Digital card (SPI mode)' desc = 'Secure Digital card (SPI mode) low-level protocol.' license = 'gplv2+' inputs = ['spi'] outputs = ['sdcard_spi'] annotations = \ tuple(('cmd%d' % i, 'CMD%d' % i) for i in range(64)) + \ tuple(('acmd%d' % i, 'ACMD%d' % i) for i in range(64)) + ( \ ('r1', 'R1 reply'), ('r1b', 'R1B reply'), ('r2', 'R2 reply'), ('r3', 'R3 reply'), ('r7', 'R7 reply'), ('bits', 'Bits'), ('bit-warnings', 'Bit warnings'), ) annotation_rows = ( ('bits', 'Bits', (134, 135)), ('cmd-reply', 'Commands/replies', tuple(range(134))), ) def __init__(self, **kwargs): self.state = 'IDLE' self.ss, self.es = 0, 0 self.bit_ss, self.bit_es = 0, 0 self.cmd_ss, self.cmd_es = 0, 0 self.cmd_token = [] self.cmd_token_bits = [] self.is_acmd = False # Indicates CMD vs. ACMD self.blocklen = 0 self.read_buf = [] self.cmd_str = '' def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.cmd_ss, self.cmd_es, self.out_ann, data) def putc(self, cmd, desc): self.putx([cmd, ['%s: %s' % (self.cmd_str, desc)]]) def putb(self, data): self.put(self.bit_ss, self.bit_es, self.out_ann, data) def cmd_name(self, cmd): c = acmd_names if self.is_acmd else cmd_names return c.get(cmd, 'Unknown') def handle_command_token(self, mosi, miso): # Command tokens (6 bytes) are sent (MSB-first) by the host. # # Format: # - CMD[47:47]: Start bit (always 0) # - CMD[46:46]: Transmitter bit (1 == host) # - CMD[45:40]: Command index (BCD; valid: 0-63) # - CMD[39:08]: Argument # - CMD[07:01]: CRC7 # - CMD[00:00]: End bit (always 1) if len(self.cmd_token) == 0: self.cmd_ss = self.ss self.cmd_token.append(mosi) self.cmd_token_bits.append(self.mosi_bits) # All command tokens are 6 bytes long. if len(self.cmd_token) < 6: return self.cmd_es = self.es t = self.cmd_token # CMD or ACMD? s = 'ACMD' if self.is_acmd else 'CMD' def tb(byte, bit): return self.cmd_token_bits[5 - byte][bit] # Bits[47:47]: Start bit (always 0) bit, self.bit_ss, self.bit_es = tb(5, 7)[0], tb(5, 7)[1], tb(5, 7)[2] if bit == 0: self.putb([134, ['Start bit: %d' % bit]]) else: self.putb([135, ['Start bit: %s (Warning: Must be 0!)' % bit]]) # Bits[46:46]: Transmitter bit (1 == host) bit, self.bit_ss, self.bit_es = tb(5, 6)[0], tb(5, 6)[1], tb(5, 6)[2] if bit == 1: self.putb([134, ['Transmitter bit: %d' % bit]]) else: self.putb([135, ['Transmitter bit: %d (Warning: Must be 1!)' % bit]]) # Bits[45:40]: Command index (BCD; valid: 0-63) cmd = self.cmd_index = t[0] & 0x3f self.bit_ss, self.bit_es = tb(5, 5)[1], tb(5, 0)[2] self.putb([134, ['Command: %s%d (%s)' % (s, cmd, self.cmd_name(cmd))]]) # Bits[39:8]: Argument self.arg = (t[1] << 24) | (t[2] << 16) | (t[3] << 8) | t[4] self.bit_ss, self.bit_es = tb(4, 7)[1], tb(1, 0)[2] self.putb([134, ['Argument: 0x%04x' % self.arg]]) # Bits[7:1]: CRC7 # TODO: Check CRC7. crc = t[5] >> 1 self.bit_ss, self.bit_es = tb(0, 7)[1], tb(0, 1)[2] self.putb([134, ['CRC7: 0x%01x' % crc]]) # Bits[0:0]: End bit (always 1) bit, self.bit_ss, self.bit_es = tb(0, 0)[0], tb(0, 0)[1], tb(0, 0)[2] self.putb([134, ['End bit: %d' % bit]]) if bit == 1: self.putb([134, ['End bit: %d' % bit]]) else: self.putb([135, ['End bit: %d (Warning: Must be 1!)' % bit]]) # Handle command. if cmd in (0, 1, 9, 16, 17, 41, 49, 55, 59): self.state = 'HANDLE CMD%d' % cmd self.cmd_str = '%s%d (%s)' % (s, cmd, self.cmd_name(cmd)) else: self.state = 'HANDLE CMD999' a = '%s%d: %02x %02x %02x %02x %02x %02x' % ((s, cmd) + tuple(t)) self.putx([cmd, [a]]) def handle_cmd0(self): # CMD0: GO_IDLE_STATE self.putc(0, 'Reset the SD card') self.state = 'GET RESPONSE R1' def handle_cmd1(self): # CMD1: SEND_OP_COND self.putc(1, 'Send HCS info and activate the card init process') hcs = (self.arg & (1 << 30)) >> 30 self.bit_ss = self.cmd_token_bits[5 - 4][6][1] self.bit_es = self.cmd_token_bits[5 - 4][6][2] self.putb([134, ['HCS: %d' % hcs]]) self.state = 'GET RESPONSE R1' def handle_cmd9(self): # CMD9: SEND_CSD (128 bits / 16 bytes) self.putc(9, 'Ask card to send its card specific data (CSD)') if len(self.read_buf) == 0: self.cmd_ss = self.ss self.read_buf.append(self.miso) # FIXME ### if len(self.read_buf) < 16: if len(self.read_buf) < 16 + 4: return self.cmd_es = self.es self.read_buf = self.read_buf[4:] # TODO: Document or redo. self.putx([9, ['CSD: %s' % self.read_buf]]) # TODO: Decode all bits. self.read_buf = [] ### self.state = 'GET RESPONSE R1' self.state = 'IDLE' def handle_cmd10(self): # CMD10: SEND_CID (128 bits / 16 bytes) self.putc(10, 'Ask card to send its card identification (CID)') self.read_buf.append(self.miso) if len(self.read_buf) < 16: return self.putx([10, ['CID: %s' % self.read_buf]]) # TODO: Decode all bits. self.read_buf = [] self.state = 'GET RESPONSE R1' def handle_cmd16(self): # CMD16: SET_BLOCKLEN self.blocklen = self.arg # TODO: Sanity check on block length. self.putc(16, 'Set the block length to %d bytes' % self.blocklen) self.state = 'GET RESPONSE R1' def handle_cmd17(self): # CMD17: READ_SINGLE_BLOCK self.putc(17, 'Read a block from address 0x%04x' % self.arg) if len(self.read_buf) == 0: self.cmd_ss = self.ss self.read_buf.append(self.miso) if len(self.read_buf) < self.blocklen + 2: # FIXME return self.cmd_es = self.es self.read_buf = self.read_buf[2:] # FIXME self.putx([17, ['Block data: %s' % self.read_buf]]) self.read_buf = [] self.state = 'GET RESPONSE R1' def handle_cmd49(self): self.state = 'GET RESPONSE R1' def handle_cmd55(self): # CMD55: APP_CMD self.putc(55, 'Next command is an application-specific command') self.is_acmd = True self.state = 'GET RESPONSE R1' def handle_cmd59(self): # CMD59: CRC_ON_OFF crc_on_off = self.arg & (1 << 0) s = 'on' if crc_on_off == 1 else 'off' self.putc(59, 'Turn the SD card CRC option %s' % s) self.state = 'GET RESPONSE R1' def handle_acmd41(self): # ACMD41: SD_SEND_OP_COND self.putc(64 + 41, 'Send HCS info and activate the card init process') self.state = 'GET RESPONSE R1' def handle_cmd999(self): self.state = 'GET RESPONSE R1' def handle_cid_register(self): # Card Identification (CID) register, 128bits cid = self.cid # Manufacturer ID: CID[127:120] (8 bits) mid = cid[15] # OEM/Application ID: CID[119:104] (16 bits) oid = (cid[14] << 8) | cid[13] # Product name: CID[103:64] (40 bits) pnm = 0 for i in range(12, 8 - 1, -1): pnm <<= 8 pnm |= cid[i] # Product revision: CID[63:56] (8 bits) prv = cid[7] # Product serial number: CID[55:24] (32 bits) psn = 0 for i in range(6, 3 - 1, -1): psn <<= 8 psn |= cid[i] # RESERVED: CID[23:20] (4 bits) # Manufacturing date: CID[19:8] (12 bits) # TODO # CRC7 checksum: CID[7:1] (7 bits) # TODO # Not used, always 1: CID[0:0] (1 bit) # TODO def handle_response_r1(self, res): # The R1 response token format (1 byte). # Sent by the card after every command except for SEND_STATUS. self.cmd_ss, self.cmd_es = self.miso_bits[7][1], self.miso_bits[0][2] self.putx([65, ['R1: 0x%02x' % res]]) def putbit(bit, data): b = self.miso_bits[bit] self.bit_ss, self.bit_es = b[1], b[2] self.putb([134, data]) # Bit 0: 'In idle state' bit s = '' if (res & (1 << 0)) else 'not ' putbit(0, ['Card is %sin idle state' % s]) # Bit 1: 'Erase reset' bit s = '' if (res & (1 << 1)) else 'not ' putbit(1, ['Erase sequence %scleared' % s]) # Bit 2: 'Illegal command' bit s = 'I' if (res & (1 << 2)) else 'No i' putbit(2, ['%sllegal command detected' % s]) # Bit 3: 'Communication CRC error' bit s = 'failed' if (res & (1 << 3)) else 'was successful' putbit(3, ['CRC check of last command %s' % s]) # Bit 4: 'Erase sequence error' bit s = 'E' if (res & (1 << 4)) else 'No e' putbit(4, ['%srror in the sequence of erase commands' % s]) # Bit 5: 'Address error' bit s = 'M' if (res & (1 << 4)) else 'No m' putbit(5, ['%sisaligned address used in command' % s]) # Bit 6: 'Parameter error' bit s = '' if (res & (1 << 4)) else 'not ' putbit(6, ['Command argument %soutside allowed range' % s]) # Bit 7: Always set to 0 putbit(7, ['Bit 7 (always 0)']) self.state = 'IDLE' def handle_response_r1b(self, res): # TODO pass def handle_response_r2(self, res): # TODO pass def handle_response_r3(self, res): # TODO pass # Note: Response token formats R4 and R5 are reserved for SDIO. # TODO: R6? def handle_response_r7(self, res): # TODO pass def decode(self, ss, es, data): ptype, mosi, miso = data # For now, only use DATA and BITS packets. if ptype not in ('DATA', 'BITS'): return # Store the individual bit values and ss/es numbers. The next packet # is guaranteed to be a 'DATA' packet belonging to this 'BITS' one. if ptype == 'BITS': self.miso_bits, self.mosi_bits = miso, mosi return self.ss, self.es = ss, es # State machine. if self.state == 'IDLE': # Ignore stray 0xff bytes, some devices seem to send those!? if mosi == 0xff: # TODO? return self.state = 'GET COMMAND TOKEN' self.handle_command_token(mosi, miso) elif self.state == 'GET COMMAND TOKEN': self.handle_command_token(mosi, miso) elif self.state.startswith('HANDLE CMD'): self.miso, self.mosi = miso, mosi # Call the respective handler method for the command. a, cmdstr = 'a' if self.is_acmd else '', self.state[10:].lower() handle_cmd = getattr(self, 'handle_%scmd%s' % (a, cmdstr)) handle_cmd() self.cmd_token = [] self.cmd_token_bits = [] # Leave ACMD mode again after the first command after CMD55. if self.is_acmd and cmdstr != '55': self.is_acmd = False elif self.state.startswith('GET RESPONSE'): # Ignore stray 0xff bytes, some devices seem to send those!? if miso == 0xff: # TODO? return # Call the respective handler method for the response. s = 'handle_response_%s' % self.state[13:].lower() handle_response = getattr(self, s) handle_response(miso) self.state = 'IDLE'