## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2015-2020 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import SrdIntEnum, SrdStrEnum from common.sdcard import (cmd_names, acmd_names, accepted_voltages, sd_status) responses = '1 1b 2 3 6 7'.split() token_fields = 'START TRANSMISSION CMD ARG CRC END'.split() reg_card_status = 'OUT_OF_RANGE ADDRESS_ERROR BLOCK_LEN_ERROR ERASE_SEQ_ERROR \ ERASE_PARAM WP_VIOLATION CARD_IS_LOCKED LOCK_UNLOCK_FAILED COM_CRC_ERROR \ ILLEGAL_COMMAND CARD_ECC_FAILED CC_ERROR ERROR RSVD_DEFERRED_RESPONSE \ CSD_OVERWRITE WP_ERASE_SKIP CARD_ECC_DISABLED ERASE_RESET CURRENT_STATE \ READY_FOR_DATA RSVD FX_EVENT APP_CMD RSVD_SDIO AKE_SEQ_ERROR RSVD_APP_CMD \ RSVD_TESTMODE'.split() reg_cid = 'MID OID PNM PRV PSN RSVD MDT CRC ONE'.split() reg_csd = 'CSD_STRUCTURE RSVD TAAC NSAC TRAN_SPEED CCC READ_BL_LEN \ READ_BL_PARTIAL WRITE_BLK_MISALIGN READ_BLK_MISALIGN DSR_IMP C_SIZE \ VDD_R_CURR_MIN VDD_R_CURR_MAX VDD_W_CURR_MIN VDD_W_CURR_MAX C_SIZE_MULT \ ERASE_BLK_EN SECTOR_SIZE WP_GRP_SIZE WP_GRP_ENABLE R2W_FACTOR \ WRITE_BL_LEN WRITE_BL_PARTIAL FILE_FORMAT_GRP COPY PERM_WRITE_PROTECT \ TMP_WRITE_PROTECT FILE_FORMAT CRC ONE'.split() Pin = SrdIntEnum.from_str('Pin', 'CMD CLK DAT0 DAT1 DAT2 DAT3') a = ['CMD%d' % i for i in range(64)] + ['ACMD%d' % i for i in range(64)] + \ ['RESPONSE_R' + r.upper() for r in responses] + \ ['R_STATUS_' + r for r in reg_card_status] + \ ['R_CID_' + r for r in reg_cid] + \ ['R_CSD_' + r for r in reg_csd] + \ ['BIT_' + r for r in ('0', '1')] + \ ['F_' + f for f in token_fields] + \ ['DECODED_BIT', 'DECODED_F'] Ann = SrdIntEnum.from_list('Ann', a) s = ['GET_COMMAND_TOKEN', 'HANDLE_CMD999'] + \ ['HANDLE_CMD%d' % i for i in range(64)] + \ ['HANDLE_ACMD%d' % i for i in range(64)] + \ ['GET_RESPONSE_R%s' % r.upper() for r in responses] St = SrdStrEnum.from_list('St', s) class Bit: def __init__(self, s, e, b): self.ss, self.es, self.bit = s, e ,b class Decoder(srd.Decoder): api_version = 3 id = 'sdcard_sd' name = 'SD card (SD mode)' longname = 'Secure Digital card (SD mode)' desc = 'Secure Digital card (SD mode) low-level protocol.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['Memory'] channels = ( {'id': 'cmd', 'name': 'CMD', 'desc': 'Command'}, {'id': 'clk', 'name': 'CLK', 'desc': 'Clock'}, ) optional_channels = ( {'id': 'dat0', 'name': 'DAT0', 'desc': 'Data pin 0'}, {'id': 'dat1', 'name': 'DAT1', 'desc': 'Data pin 1'}, {'id': 'dat2', 'name': 'DAT2', 'desc': 'Data pin 2'}, {'id': 'dat3', 'name': 'DAT3', 'desc': 'Data pin 3'}, ) annotations = \ tuple(('cmd%d' % i, 'CMD%d' % i) for i in range(64)) + \ tuple(('acmd%d' % i, 'ACMD%d' % i) for i in range(64)) + \ tuple(('response_r%s' % r, 'R%s' % r) for r in responses) + \ tuple(('reg_status_' + r.lower(), 'Status: ' + r) for r in reg_card_status) + \ tuple(('reg_cid_' + r.lower(), 'CID: ' + r) for r in reg_cid) + \ tuple(('reg_csd_' + r.lower(), 'CSD: ' + r) for r in reg_csd) + \ tuple(('bit_' + r, 'Bit ' + r) for r in ('0', '1')) + \ tuple(('field-' + r.lower(), r) for r in token_fields) + \ ( \ ('decoded-bit', 'Decoded bit'), ('decoded-field', 'Decoded field'), ) annotation_rows = ( ('raw-bits', 'Raw bits', Ann.prefixes('BIT_')), ('decoded-bits', 'Decoded bits', (Ann.DECODED_BIT,) + Ann.prefixes('R_')), ('decoded-fields', 'Decoded fields', (Ann.DECODED_F,)), ('fields', 'Fields', Ann.prefixes('F_')), ('commands', 'Commands', Ann.prefixes('CMD ACMD RESPONSE_')), ) def __init__(self): self.reset() def reset(self): self.state = St.GET_COMMAND_TOKEN self.token = [] self.is_acmd = False # Indicates CMD vs. ACMD self.cmd = None self.last_cmd = None self.arg = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putt(self, data): self.put(self.token[0].ss, self.token[47].es, self.out_ann, data) def putf(self, s, e, data): self.put(self.token[s].ss, self.token[e].es, self.out_ann, data) def puta(self, s, e, data): self.put(self.token[47 - 8 - e].ss, self.token[47 - 8 - s].es, self.out_ann, data) def putc(self, desc): cmd = Ann.ACMD0 + self.cmd if self.is_acmd else self.cmd self.last_cmd = cmd self.putt([cmd, ['%s: %s' % (self.cmd_str, desc), self.cmd_str, self.cmd_str.split(' ')[0]]]) def putr(self, r): self.putt([r, ['Response: %s' % r.name.split('_')[1]]]) def cmd_name(self, cmd): c = acmd_names if self.is_acmd else cmd_names return c.get(cmd, 'Unknown') def get_token_bits(self, cmd_pin, n): # Get a bit, return True if we already got 'n' bits, False otherwise. self.token.append(Bit(self.samplenum, self.samplenum, cmd_pin)) if len(self.token) > 0: self.token[len(self.token) - 2].es = self.samplenum if len(self.token) < n: return False self.token[n - 1].es += self.token[n - 1].ss - self.token[n - 2].ss return True def handle_common_token_fields(self): s = self.token # Annotations for each individual bit. for bit in range(len(self.token)): self.putf(bit, bit, [Ann.BIT_0 + s[bit].bit, ['%d' % s[bit].bit]]) # CMD[47:47]: Start bit (always 0) self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']]) # CMD[46:46]: Transmission bit (1 == host) t = 'host' if s[1].bit == 1 else 'card' self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']]) # CMD[45:40]: Command index (BCD; valid: 0-63) self.cmd = int('0b' + ''.join([str(s[i].bit) for i in range(2, 8)]), 2) c = '%s (%d)' % (self.cmd_name(self.cmd), self.cmd) self.putf(2, 7, [Ann.F_CMD, ['Command: ' + c, 'Cmd: ' + c, 'CMD%d' % self.cmd, 'Cmd', 'C']]) # CMD[39:08]: Argument self.arg = int('0b' + ''.join([str(s[i].bit) for i in range(8, 40)]), 2) self.putf(8, 39, [Ann.F_ARG, ['Argument: 0x%08x' % self.arg, 'Arg', 'A']]) # CMD[07:01]: CRC7 self.crc = int('0b' + ''.join([str(s[i].bit) for i in range(40, 47)]), 2) self.putf(40, 46, [Ann.F_CRC, ['CRC: 0x%x' % self.crc, 'CRC', 'C']]) # CMD[00:00]: End bit (always 1) self.putf(47, 47, [Ann.F_END, ['End bit', 'End', 'E']]) def get_command_token(self, cmd_pin): # Command tokens (48 bits) are sent serially (MSB-first) by the host # (over the CMD line), either to one SD card or to multiple ones. # # Format: # - Bits[47:47]: Start bit (always 0) # - Bits[46:46]: Transmission bit (1 == host) # - Bits[45:40]: Command index (BCD; valid: 0-63) # - Bits[39:08]: Argument # - Bits[07:01]: CRC7 # - Bits[00:00]: End bit (always 1) if not self.get_token_bits(cmd_pin, 48): return self.handle_common_token_fields() # Handle command. s = 'ACMD' if self.is_acmd else 'CMD' self.cmd_str = '%s%d (%s)' % (s, self.cmd, self.cmd_name(self.cmd)) if hasattr(self, 'handle_%s%d' % (s.lower(), self.cmd)): self.state = St['HANDLE_CMD%d' % self.cmd] else: self.state = St.HANDLE_CMD999 self.putc('%s%d' % (s, self.cmd)) def handle_cmd0(self): # CMD0 (GO_IDLE_STATE) -> no response self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Reset all SD cards') self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_cmd2(self): # CMD2 (ALL_SEND_CID) -> R2 self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Ask card for CID number') self.token, self.state = [], St.GET_RESPONSE_R2 def handle_cmd3(self): # CMD3 (SEND_RELATIVE_ADDR) -> R6 self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Ask card for new relative card address (RCA)') self.token, self.state = [], St.GET_RESPONSE_R6 def handle_cmd6(self): # CMD6 (SWITCH_FUNC) -> R1 self.putc('Switch/check card function') self.token, self.state = [], St.GET_RESPONSE_R1 def handle_cmd7(self): # CMD7 (SELECT/DESELECT_CARD) -> R1b self.putc('Select / deselect card') self.token, self.state = [], St.GET_RESPONSE_R6 def handle_cmd8(self): # CMD8 (SEND_IF_COND) -> R7 self.puta(12, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']]) self.puta(8, 11, [Ann.DECODED_F, ['Supply voltage', 'Voltage', 'VHS', 'V']]) self.puta(0, 7, [Ann.DECODED_F, ['Check pattern', 'Check pat', 'Check', 'C']]) self.putc('Send interface condition to card') self.token, self.state = [], St.GET_RESPONSE_R7 # TODO: Handle case when card doesn't reply with R7 (no reply at all). def handle_cmd9(self): # CMD9 (SEND_CSD) -> R2 self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']]) self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Send card-specific data (CSD)') self.token, self.state = [], St.GET_RESPONSE_R2 def handle_cmd10(self): # CMD10 (SEND_CID) -> R2 self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']]) self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Send card identification data (CID)') self.token, self.state = [], St.GET_RESPONSE_R2 def handle_cmd13(self): # CMD13 (SEND_STATUS) -> R1 self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']]) self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Send card status register') self.token, self.state = [], St.GET_RESPONSE_R1 def handle_cmd16(self): # CMD16 (SET_BLOCKLEN) -> R1 self.puta(0, 31, [Ann.DECODED_F, ['Block length', 'Blocklen', 'BL', 'B']]) self.putc('Set the block length to %d bytes' % self.arg) self.token, self.state = [], St.GET_RESPONSE_R1 def handle_cmd55(self): # CMD55 (APP_CMD) -> R1 self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']]) self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Next command is an application-specific command') self.is_acmd = True self.token, self.state = [], St.GET_RESPONSE_R1 def handle_acmd6(self): # ACMD6 (SET_BUS_WIDTH) -> R1 self.putc('Read SD config register (SCR)') self.token, self.state = [], St.GET_RESPONSE_R1 def handle_acmd13(self): # ACMD13 (SD_STATUS) -> R1 self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']]) self.putc('Set SD status') self.token, self.state = [], St.GET_RESPONSE_R1 def handle_acmd41(self): # ACMD41 (SD_SEND_OP_COND) -> R3 self.puta(0, 23, [Ann.DECODED_F, ['VDD voltage window', 'VDD volt', 'VDD', 'V']]) self.puta(24, 24, [Ann.DECODED_F, ['S18R']]) self.puta(25, 27, [Ann.DECODED_F, ['Reserved', 'Res', 'R']]) self.puta(28, 28, [Ann.DECODED_F, ['XPC']]) self.puta(29, 29, [Ann.DECODED_F, ['Reserved for eSD', 'Reserved', 'Res', 'R']]) self.puta(30, 30, [Ann.DECODED_F, ['Host capacity support info', 'Host capacity', 'HCS', 'H']]) self.puta(31, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']]) self.putc('Send HCS info and activate the card init process') self.token, self.state = [], St.GET_RESPONSE_R3 def handle_acmd51(self): # ACMD51 (SEND_SCR) -> R1 self.putc('Read SD config register (SCR)') self.token, self.state = [], St.GET_RESPONSE_R1 def handle_cmd999(self): self.token, self.state = [], St.GET_RESPONSE_R1 def handle_acmd999(self): self.token, self.state = [], St.GET_RESPONSE_R1 def handle_reg_status(self): self.putf(8, 8, [Ann.R_STATUS_OUT_OF_RANGE, ['OUT_OF_RANGE']]) self.putf(9, 9, [Ann.R_STATUS_ADDRESS_ERROR, ['ADDRESS_ERROR']]) self.putf(10, 10, [Ann.R_STATUS_BLOCK_LEN_ERROR, ['BLOCK_LEN_ERROR']]) self.putf(11, 11, [Ann.R_STATUS_ERASE_SEQ_ERROR, ['ERASE_SEQ_ERROR']]) self.putf(12, 12, [Ann.R_STATUS_ERASE_PARAM, ['ERASE_PARAM']]) self.putf(13, 13, [Ann.R_STATUS_WP_VIOLATION, ['WP_VIOLATION']]) self.putf(14, 14, [Ann.R_STATUS_CARD_IS_LOCKED, ['CARD_IS_LOCKED']]) self.putf(15, 15, [Ann.R_STATUS_LOCK_UNLOCK_FAILED, ['LOCK_UNLOCK_FAILED']]) self.putf(16, 16, [Ann.R_STATUS_COM_CRC_ERROR, ['COM_CRC_ERROR']]) self.putf(17, 17, [Ann.R_STATUS_ILLEGAL_COMMAND, ['ILLEGAL_COMMAND']]) self.putf(18, 18, [Ann.R_STATUS_CARD_ECC_FAILED, ['CARD_ECC_FAILED']]) self.putf(19, 19, [Ann.R_STATUS_CC_ERROR, ['CC_ERROR']]) self.putf(20, 20, [Ann.R_STATUS_ERROR, ['ERROR']]) self.putf(21, 21, [Ann.R_STATUS_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(22, 22, [Ann.R_STATUS_RSVD_DEFERRED_RESPONSE, ['Reserved for DEFERRED_RESPONSE', 'RSVD_DEFERRED_RESPONSE']]) self.putf(23, 23, [Ann.R_STATUS_CSD_OVERWRITE, ['CSD_OVERWRITE']]) self.putf(24, 24, [Ann.R_STATUS_WP_ERASE_SKIP, ['WP_ERASE_SKIP']]) self.putf(25, 25, [Ann.R_STATUS_CARD_ECC_DISABLED, ['CARD_ECC_DISABLED']]) self.putf(26, 26, [Ann.R_STATUS_ERASE_RESET, ['ERASE_RESET']]) self.putf(27, 30, [Ann.R_STATUS_CURRENT_STATE, ['CURRENT_STATE']]) self.putf(31, 31, [Ann.R_STATUS_READY_FOR_DATA, ['READY_FOR_DATA']]) self.putf(32, 32, [Ann.R_STATUS_RSVD, ['RSVD']]) self.putf(33, 33, [Ann.R_STATUS_FX_EVENT, ['FX_EVENT']]) self.putf(34, 34, [Ann.R_STATUS_APP_CMD, ['APP_CMD']]) self.putf(35, 35, [Ann.R_STATUS_RSVD_SDIO, ['Reserved for SDIO card', 'RSVD_SDIO']]) self.putf(36, 36, [Ann.R_STATUS_AKE_SEQ_ERROR, ['AKE_SEQ_ERROR']]) self.putf(37, 37, [Ann.R_STATUS_RSVD_APP_CMD, ['Reserved for application specific commands', 'RSVD_APP_CMD']]) self.putf(38, 39, [Ann.R_STATUS_RSVD_TESTMODE, ['Reserved for manufacturer test mode', 'RSVD_TESTMODE']]) def handle_reg_cid(self): self.putf(8, 15, [Ann.R_CID_MID, ['Manufacturer ID', 'MID']]) self.putf(16, 31, [Ann.R_CID_OID, ['OEM/application ID', 'OID']]) self.putf(32, 71, [Ann.R_CID_PNM, ['Product name', 'PNM']]) self.putf(72, 79, [Ann.R_CID_PRV, ['Product revision', 'PRV']]) self.putf(80, 111, [Ann.R_CID_PSN, ['Product serial number', 'PSN']]) self.putf(112, 115, [Ann.R_CID_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(116, 127, [Ann.R_CID_MDT, ['Manufacturing date', 'MDT']]) self.putf(128, 134, [Ann.R_CID_CRC, ['CRC7 checksum', 'CRC']]) self.putf(135, 135, [Ann.R_CID_ONE, ['Always 1', '1']]) def handle_reg_csd(self): self.putf(8, 9, [Ann.R_CSD_CSD_STRUCTURE, ['CSD structure', 'CSD_STRUCTURE']]) self.putf(10, 15, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(16, 23, [Ann.R_CSD_TAAC, ['Data read access-time - 1', 'TAAC']]) self.putf(24, 31, [Ann.R_CSD_NSAC, ['Data read access-time - 2 in CLK cycles (NSAC * 100)', 'NSAC']]) self.putf(32, 39, [Ann.R_CSD_TRAN_SPEED, ['Max. data transfer rate', 'TRAN_SPEED']]) self.putf(40, 51, [Ann.R_CSD_CCC, ['Card command classes', 'CCC']]) self.putf(52, 55, [Ann.R_CSD_READ_BL_LEN, ['Max. read data block length', 'READ_BL_LEN']]) self.putf(56, 56, [Ann.R_CSD_READ_BL_PARTIAL, ['Partial blocks for read allowed', 'READ_BL_PARTIAL']]) self.putf(57, 57, [Ann.R_CSD_WRITE_BLK_MISALIGN, ['Write block misalignment', 'WRITE_BLK_MISALIGN']]) self.putf(58, 58, [Ann.R_CSD_READ_BLK_MISALIGN, ['Read block misalignment', 'READ_BLK_MISALIGN']]) self.putf(59, 59, [Ann.R_CSD_DSR_IMP, ['DSR implemented', 'DSR_IMP']]) self.putf(60, 61, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(62, 73, [Ann.R_CSD_C_SIZE, ['Device size', 'C_SIZE']]) self.putf(74, 76, [Ann.R_CSD_VDD_R_CURR_MIN, ['Max. read current @VDD min', 'VDD_R_CURR_MIN']]) self.putf(77, 79, [Ann.R_CSD_VDD_R_CURR_MAX, ['Max. read current @VDD max', 'VDD_R_CURR_MAX']]) self.putf(80, 82, [Ann.R_CSD_VDD_W_CURR_MIN, ['Max. write current @VDD min', 'VDD_W_CURR_MIN']]) self.putf(83, 85, [Ann.R_CSD_VDD_W_CURR_MAX, ['Max. write current @VDD max', 'VDD_W_CURR_MAX']]) self.putf(86, 88, [Ann.R_CSD_C_SIZE_MULT, ['Device size multiplier', 'C_SIZE_MULT']]) self.putf(89, 89, [Ann.R_CSD_ERASE_BLK_EN, ['Erase single block enable', 'ERASE_BLK_EN']]) self.putf(90, 96, [Ann.R_CSD_SECTOR_SIZE, ['Erase sector size', 'SECTOR_SIZE']]) self.putf(97, 103, [Ann.R_CSD_WP_GRP_SIZE, ['Write protect group size', 'WP_GRP_SIZE']]) self.putf(104, 104, [Ann.R_CSD_WP_GRP_ENABLE, ['Write protect group enable', 'WP_GRP_ENABLE']]) self.putf(105, 106, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(107, 109, [Ann.R_CSD_R2W_FACTOR, ['Write speed factor', 'R2W_FACTOR']]) self.putf(110, 113, [Ann.R_CSD_WRITE_BL_LEN, ['Max. write data block length', 'WRITE_BL_LEN']]) self.putf(114, 114, [Ann.R_CSD_WRITE_BL_PARTIAL, ['Partial blocks for write allowed', 'WRITE_BL_PARTIAL']]) self.putf(115, 119, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD']]) self.putf(120, 120, [Ann.R_CSD_FILE_FORMAT_GRP, ['File format group', 'FILE_FORMAT_GRP']]) self.putf(121, 121, [Ann.R_CSD_COPY, ['Copy flag', 'COPY']]) self.putf(122, 122, [Ann.R_CSD_PERM_WRITE_PROTECT, ['Permanent write protection', 'PERM_WRITE_PROTECT']]) self.putf(123, 123, [Ann.R_CSD_TMP_WRITE_PROTECT, ['Temporary write protection', 'TMP_WRITE_PROTECT']]) self.putf(124, 125, [Ann.R_CSD_FILE_FORMAT, ['File format', 'FILE_FORMAT']]) self.putf(126, 127, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']]) self.putf(128, 134, [Ann.R_CSD_CRC, ['CRC', 'CRC', 'C']]) self.putf(135, 135, [Ann.R_CSD_ONE, ['Always 1', '1']]) # Response tokens can have one of four formats (depends on content). # They can have a total length of 48 or 136 bits. # They're sent serially (MSB-first) by the card that the host # addressed previously, or (synchronously) by all connected cards. def handle_response_r1(self, cmd_pin): # R1: Normal response command # - Bits[47:47]: Start bit (always 0) # - Bits[46:46]: Transmission bit (0 == card) # - Bits[45:40]: Command index (BCD; valid: 0-63) # - Bits[39:08]: Card status # - Bits[07:01]: CRC7 # - Bits[00:00]: End bit (always 1) if not self.get_token_bits(cmd_pin, 48): return self.handle_common_token_fields() self.putr(Ann.RESPONSE_R1) self.puta(0, 31, [Ann.DECODED_F, ['Card status', 'Status', 'S']]) self.handle_reg_status() self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_response_r1b(self, cmd_pin): # R1b: Same as R1 with an optional busy signal (on the data line) if not self.get_token_bits(cmd_pin, 48): return self.handle_common_token_fields() self.puta(0, 31, [Ann.DECODED_F, ['Card status', 'Status', 'S']]) self.putr(Ann.RESPONSE_R1B) self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_response_r2(self, cmd_pin): # R2: CID/CSD register # - Bits[135:135]: Start bit (always 0) # - Bits[134:134]: Transmission bit (0 == card) # - Bits[133:128]: Reserved (always 0b111111) # - Bits[127:001]: CID or CSD register including internal CRC7 # - Bits[000:000]: End bit (always 1) if not self.get_token_bits(cmd_pin, 136): return # Annotations for each individual bit. for bit in range(len(self.token)): self.putf(bit, bit, [Ann.BIT_0 + self.token[bit].bit, ['%d' % self.token[bit].bit]]) self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']]) t = 'host' if self.token[1].bit == 1 else 'card' self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']]) self.putf(2, 7, [Ann.F_CMD, ['Reserved', 'Res', 'R']]) self.putf(8, 134, [Ann.F_ARG, ['Argument', 'Arg', 'A']]) self.putf(135, 135, [Ann.F_END, ['End bit', 'End', 'E']]) self.putf(8, 134, [Ann.DECODED_F, ['CID/CSD register', 'CID/CSD', 'C']]) self.putf(0, 135, [Ann.RESPONSE_R2, ['Response: R2']]) if self.last_cmd in (Ann.CMD2, Ann.CMD10): self.handle_reg_cid() if self.last_cmd == Ann.CMD9: self.handle_reg_csd() self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_response_r3(self, cmd_pin): # R3: OCR register # - Bits[47:47]: Start bit (always 0) # - Bits[46:46]: Transmission bit (0 == card) # - Bits[45:40]: Reserved (always 0b111111) # - Bits[39:08]: OCR register # - Bits[07:01]: Reserved (always 0b111111) # - Bits[00:00]: End bit (always 1) if not self.get_token_bits(cmd_pin, 48): return self.putr(Ann.RESPONSE_R3) # Annotations for each individual bit. for bit in range(len(self.token)): self.putf(bit, bit, [Ann.BIT_0 + self.token[bit].bit, ['%d' % self.token[bit].bit]]) self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']]) t = 'host' if self.token[1].bit == 1 else 'card' self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']]) self.putf(2, 7, [Ann.F_CMD, ['Reserved', 'Res', 'R']]) self.putf(8, 39, [Ann.F_ARG, ['Argument', 'Arg', 'A']]) self.putf(40, 46, [Ann.F_CRC, ['Reserved', 'Res', 'R']]) self.putf(47, 47, [Ann.F_END, ['End bit', 'End', 'E']]) self.puta(0, 31, [Ann.DECODED_F, ['OCR register', 'OCR reg', 'OCR', 'O']]) self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_response_r6(self, cmd_pin): # R6: Published RCA response # - Bits[47:47]: Start bit (always 0) # - Bits[46:46]: Transmission bit (0 == card) # - Bits[45:40]: Command index (always 0b000011) # - Bits[39:24]: Argument[31:16]: New published RCA of the card # - Bits[23:08]: Argument[15:0]: Card status bits # - Bits[07:01]: CRC7 # - Bits[00:00]: End bit (always 1) if not self.get_token_bits(cmd_pin, 48): return self.handle_common_token_fields() self.puta(0, 15, [Ann.DECODED_F, ['Card status bits', 'Status', 'S']]) self.puta(16, 31, [Ann.DECODED_F, ['Relative card address', 'RCA', 'R']]) self.putr(Ann.RESPONSE_R6) self.token, self.state = [], St.GET_COMMAND_TOKEN def handle_response_r7(self, cmd_pin): # R7: Card interface condition # - Bits[47:47]: Start bit (always 0) # - Bits[46:46]: Transmission bit (0 == card) # - Bits[45:40]: Command index (always 0b001000) # - Bits[39:20]: Reserved bits (all-zero) # - Bits[19:16]: Voltage accepted # - Bits[15:08]: Echo-back of check pattern # - Bits[07:01]: CRC7 # - Bits[00:00]: End bit (always 1) if not self.get_token_bits(cmd_pin, 48): return self.handle_common_token_fields() self.putr(Ann.RESPONSE_R7) # Arg[31:12]: Reserved bits (all-zero) self.puta(12, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']]) # Arg[11:08]: Voltage accepted v = ''.join(str(i.bit) for i in self.token[28:32]) av = accepted_voltages.get(int('0b' + v, 2), 'Unknown') self.puta(8, 11, [Ann.DECODED_F, ['Voltage accepted: ' + av, 'Voltage', 'Volt', 'V']]) # Arg[07:00]: Echo-back of check pattern self.puta(0, 7, [Ann.DECODED_F, ['Echo-back of check pattern', 'Echo', 'E']]) self.token, self.state = [], St.GET_COMMAND_TOKEN def decode(self): while True: # Wait for a rising CLK edge. (cmd_pin, clk, dat0, dat1, dat2, dat3) = self.wait({Pin.CLK: 'r'}) # State machine. if self.state == St.GET_COMMAND_TOKEN: if len(self.token) == 0: # Wait for start bit (CMD = 0). if cmd_pin != 0: continue self.get_command_token(cmd_pin) elif self.state.value.startswith('HANDLE_CMD'): # Call the respective handler method for the command. a, cmdstr = 'a' if self.is_acmd else '', self.state.value[10:].lower() handle_cmd = getattr(self, 'handle_%scmd%s' % (a, cmdstr)) handle_cmd() # Leave ACMD mode again after the first command after CMD55. if self.is_acmd and cmdstr not in ('55', '63'): self.is_acmd = False elif self.state.value.startswith('GET_RESPONSE'): if len(self.token) == 0: # Wait for start bit (CMD = 0). if cmd_pin != 0: continue # Call the respective handler method for the response. s = 'handle_response_%s' % self.state.value[13:].lower() handle_response = getattr(self, s) handle_response(cmd_pin)