## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012-2014 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd # Return the specified BCD number (max. 8 bits) as integer. def bcd2int(b): return (b & 0x0f) + ((b >> 4) * 10) def reg_list(): l = [] for i in range(8 + 1): l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i)) return tuple(l) class Decoder(srd.Decoder): api_version = 1 id = 'rtc8564' name = 'RTC-8564' longname = 'Epson RTC-8564 JE/NB' desc = 'Realtime clock module protocol.' license = 'gplv2+' inputs = ['i2c'] outputs = ['rtc8564'] annotations = reg_list() + ( ('read', 'Read date/time'), ('write', 'Write date/time'), ('bit-reserved', 'Reserved bit'), ('bit-vl', 'VL bit'), ('bit-century', 'Century bit'), ('reg-read', 'Register read'), ('reg-write', 'Register write'), ) annotation_rows = ( ('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)), ('regs', 'Register access', (14, 15)), ('date-time', 'Date/time', (9, 10)), ) def __init__(self, **kwargs): self.state = 'IDLE' self.hours = -1 self.minutes = -1 self.seconds = -1 self.days = -1 self.weekdays = -1 self.months = -1 self.years = -1 self.bits = [] def start(self): # self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss, self.es, self.out_ann, data) def putd(self, bit1, bit2, data): self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data) def putr(self, bit): self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann, [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']]) def handle_reg_0x00(self, b): # Control register 1 pass def handle_reg_0x01(self, b): # Control register 2 ti_tp = 1 if (b & (1 << 4)) else 0 af = 1 if (b & (1 << 3)) else 0 tf = 1 if (b & (1 << 2)) else 0 aie = 1 if (b & (1 << 1)) else 0 tie = 1 if (b & (1 << 0)) else 0 ann = '' s = 'repeated' if ti_tp else 'single-shot' ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\ 'events\n' % (ti_tp, s) s = '' if af else 'no ' ann += 'AF = %d: %salarm interrupt detected\n' % (af, s) s = '' if tf else 'no ' ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s) s = 'enabled' if aie else 'prohibited' ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\ 'occurs\n' % (aie, s) s = 'enabled' if tie else 'prohibited' ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\ 'event occurs\n' % (tie, s) self.putx([1, [ann]]) def handle_reg_0x02(self, b): # Seconds / Voltage-low bit vl = 1 if (b & (1 << 7)) else 0 self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl, 'VL: %d' % vl, 'VL']]) s = self.seconds = bcd2int(b & 0x7f) self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']]) def handle_reg_0x03(self, b): # Minutes self.putr(7) m = self.minutes = bcd2int(b & 0x7f) self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']]) def handle_reg_0x04(self, b): # Hours self.putr(7) self.putr(6) h = self.hours = bcd2int(b & 0x3f) self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']]) def handle_reg_0x05(self, b): # Days self.putr(7) self.putr(6) d = self.days = bcd2int(b & 0x3f) self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']]) def handle_reg_0x06(self, b): # Weekdays for i in (7, 6, 5, 4, 3): self.putr(i) w = self.weekdays = bcd2int(b & 0x07) self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']]) def handle_reg_0x07(self, b): # Months / century bit c = 1 if (b & (1 << 7)) else 0 self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c, 'Cent: %d' % c, 'C: %d' % c, 'C']]) self.putr(6) self.putr(5) m = self.months = bcd2int(b & 0x1f) self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']]) def handle_reg_0x08(self, b): # Years y = self.years = bcd2int(b & 0xff) self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']]) def handle_reg_0x09(self, b): # Alarm, minute pass def handle_reg_0x0a(self, b): # Alarm, hour pass def handle_reg_0x0b(self, b): # Alarm, day pass def handle_reg_0x0c(self, b): # Alarm, weekday pass def handle_reg_0x0d(self, b): # CLKOUT output pass def handle_reg_0x0e(self, b): # Timer setting pass def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer pass def decode(self, ss, es, data): cmd, databyte = data # Collect the 'BITS' packet, then return. The next packet is # guaranteed to belong to these bits we just stored. if cmd == 'BITS': self.bits = databyte return # Store the start/end samples of this I²C packet. self.ss, self.es = ss, es # State machine. if self.state == 'IDLE': # Wait for an I²C START condition. if cmd != 'START': return self.state = 'GET SLAVE ADDR' self.block_start_sample = ss elif self.state == 'GET SLAVE ADDR': # Wait for an address write operation. # TODO: We should only handle packets to the RTC slave (0xa2/0xa3). if cmd != 'ADDRESS WRITE': return self.state = 'GET REG ADDR' elif self.state == 'GET REG ADDR': # Wait for a data write (master selects the slave register). if cmd != 'DATA WRITE': return self.reg = databyte self.state = 'WRITE RTC REGS' elif self.state == 'WRITE RTC REGS': # If we see a Repeated Start here, it's probably an RTC read. if cmd == 'START REPEAT': self.state = 'READ RTC REGS' return # Otherwise: Get data bytes until a STOP condition occurs. if cmd == 'DATA WRITE': r, s = self.reg, '%02X: %02X' % (self.reg, databyte) self.putx([15, ['Write register %s' % s, 'Write reg %s' % s, 'WR %s' % s, 'WR', 'W']]) handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg) handle_reg(databyte) self.reg += 1 # TODO: Check for NACK! elif cmd == 'STOP': # TODO: Handle read/write of only parts of these items. d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months, self.years, self.hours, self.minutes, self.seconds) self.put(self.block_start_sample, es, self.out_ann, [9, ['Write date/time: %s' % d, 'Write: %s' % d, 'W: %s' % d]]) self.state = 'IDLE' else: pass # TODO elif self.state == 'READ RTC REGS': # Wait for an address read operation. # TODO: We should only handle packets to the RTC slave (0xa2/0xa3). if cmd == 'ADDRESS READ': self.state = 'READ RTC REGS2' return else: pass # TODO elif self.state == 'READ RTC REGS2': if cmd == 'DATA READ': r, s = self.reg, '%02X: %02X' % (self.reg, databyte) self.putx([15, ['Read register %s' % s, 'Read reg %s' % s, 'RR %s' % s, 'RR', 'R']]) handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg) handle_reg(databyte) self.reg += 1 # TODO: Check for NACK! elif cmd == 'STOP': d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months, self.years, self.hours, self.minutes, self.seconds) self.put(self.block_start_sample, es, self.out_ann, [10, ['Read date/time: %s' % d, 'Read: %s' % d, 'R: %s' % d]]) self.state = 'IDLE' else: pass # TODO? else: raise Exception('Invalid state: %s' % self.state)