## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # Epson RTC-8564 JE/NB protocol decoder import sigrokdecode as srd # Return the specified BCD number (max. 8 bits) as integer. def bcd2int(b): return (b & 0x0f) + ((b >> 4) * 10) class Decoder(srd.Decoder): api_version = 1 id = 'rtc8564' name = 'RTC-8564' longname = 'Epson RTC-8564 JE/NB' desc = 'Realtime clock module protocol.' license = 'gplv2+' inputs = ['i2c'] outputs = ['rtc8564'] probes = [] optional_probes = [ {'id': 'clkout', 'name': 'CLKOUT', 'desc': 'TODO.'}, {'id': 'clkoe', 'name': 'CLKOE', 'desc': 'TODO.'}, {'id': 'int', 'name': 'INT#', 'desc': 'TODO.'}, ] options = {} annotations = [ ['Text', 'Human-readable text'], ] def __init__(self, **kwargs): self.state = 'IDLE' self.hours = -1 self.minutes = -1 self.seconds = -1 self.days = -1 self.months = -1 self.years = -1 def start(self): # self.out_proto = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss, self.es, self.out_ann, data) def handle_reg_0x00(self, b): # Control register 1 pass def handle_reg_0x01(self, b): # Control register 2 ti_tp = 1 if (b & (1 << 4)) else 0 af = 1 if (b & (1 << 3)) else 0 tf = 1 if (b & (1 << 2)) else 0 aie = 1 if (b & (1 << 1)) else 0 tie = 1 if (b & (1 << 0)) else 0 ann = '' s = 'repeated' if ti_tp else 'single-shot' ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\ 'events\n' % (ti_tp, s) s = '' if af else 'no ' ann += 'AF = %d: %salarm interrupt detected\n' % (af, s) s = '' if tf else 'no ' ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s) s = 'enabled' if aie else 'prohibited' ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\ 'occurs\n' % (aie, s) s = 'enabled' if tie else 'prohibited' ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\ 'event occurs\n' % (tie, s) self.putx([0, [ann]]) def handle_reg_0x02(self, b): # Seconds / Voltage-low flag self.seconds = bcd2int(b & 0x7f) self.putx([0, ['Seconds: %d' % self.seconds]]) vl = 1 if (b & (1 << 7)) else 0 self.putx([0, ['Voltage low (VL) bit: %d' % vl]]) def handle_reg_0x03(self, b): # Minutes self.minutes = bcd2int(b & 0x7f) self.putx([0, ['Minutes: %d' % self.minutes]]) def handle_reg_0x04(self, b): # Hours self.hours = bcd2int(b & 0x3f) self.putx([0, ['Hours: %d' % self.hours]]) def handle_reg_0x05(self, b): # Days self.days = bcd2int(b & 0x3f) self.putx([0, ['Days: %d' % self.days]]) def handle_reg_0x06(self, b): # Day counter pass def handle_reg_0x07(self, b): # Months / century # TODO: Handle century bit. self.months = bcd2int(b & 0x1f) self.putx([0, ['Months: %d' % self.months]]) def handle_reg_0x08(self, b): # Years self.years = bcd2int(b & 0xff) self.putx([0, ['Years: %d' % self.years]]) def handle_reg_0x09(self, b): # Alarm, minute pass def handle_reg_0x0a(self, b): # Alarm, hour pass def handle_reg_0x0b(self, b): # Alarm, day pass def handle_reg_0x0c(self, b): # Alarm, weekday pass def handle_reg_0x0d(self, b): # CLKOUT output pass def handle_reg_0x0e(self, b): # Timer setting pass def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer pass def decode(self, ss, es, data): cmd, databyte = data # Store the start/end samples of this I²C packet. self.ss, self.es = ss, es # State machine. if self.state == 'IDLE': # Wait for an I²C START condition. if cmd != 'START': return self.state = 'GET SLAVE ADDR' self.block_start_sample = ss elif self.state == 'GET SLAVE ADDR': # Wait for an address write operation. # TODO: We should only handle packets to the RTC slave (0xa2/0xa3). if cmd != 'ADDRESS WRITE': return self.state = 'GET REG ADDR' elif self.state == 'GET REG ADDR': # Wait for a data write (master selects the slave register). if cmd != 'DATA WRITE': return self.reg = databyte self.state = 'WRITE RTC REGS' elif self.state == 'WRITE RTC REGS': # If we see a Repeated Start here, it's probably an RTC read. if cmd == 'START REPEAT': self.state = 'READ RTC REGS' return # Otherwise: Get data bytes until a STOP condition occurs. if cmd == 'DATA WRITE': handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg) handle_reg(databyte) self.reg += 1 # TODO: Check for NACK! elif cmd == 'STOP': # TODO: Handle read/write of only parts of these items. d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months, self.years, self.hours, self.minutes, self.seconds) self.put(self.block_start_sample, es, self.out_ann, [0, ['Written date/time: %s' % d]]) self.state = 'IDLE' else: pass # TODO elif self.state == 'READ RTC REGS': # Wait for an address read operation. # TODO: We should only handle packets to the RTC slave (0xa2/0xa3). if cmd == 'ADDRESS READ': self.state = 'READ RTC REGS2' return else: pass # TODO elif self.state == 'READ RTC REGS2': if cmd == 'DATA READ': handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg) handle_reg(databyte) self.reg += 1 # TODO: Check for NACK! elif cmd == 'STOP': d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months, self.years, self.hours, self.minutes, self.seconds) self.put(self.block_start_sample, es, self.out_ann, [0, ['Read date/time: %s' % d]]) self.state = 'IDLE' else: pass # TODO? else: raise Exception('Invalid state: %s' % self.state)