## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2016 Vladimir Ermakov ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## # Implementor's notes on the wire format: # - World Semi vendor, (Adafruit copy of the) datasheet # https://cdn-shop.adafruit.com/datasheets/WS2812.pdf # - reset pulse is 50us (or more) of low pin level # - 24bits per WS281x item, 3x 8bits, MSB first, GRB sequence, # cascaded WS281x items, all "excess bits" are passed through # - bit time starts with high period, continues with low period, # high to low periods' ratio determines bit value, datasheet # mentions 0.35us/0.8us for value 0, 0.7us/0.6us for value 1 # (huge 150ns tolerances, un-even 0/1 value length, hmm) # - experience suggests the timing "is variable", rough estimation # often is good enough, microcontroller firmware got away with # four quanta per bit time, or even with three quanta (30%/60%), # Adafruit learn article suggests 1.2us total and 0.4/0.8 or # 0.8/0.4 high/low parts, four quanta are easier to handle when # the bit stream is sent via SPI to avoid MCU bit banging and its # inaccurate timing (when interrupts are used in the firmware) # - RGBW datasheet (Adafruit copy) for SK6812 # https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf # also 1.2us total, shared across 0.3/0.9 for 0, 0.6/0.6 for 1, # 80us reset pulse, R8/G8/B8/W8 format per 32bits # - WS2815, RGB LED, uses GRB wire format, 280us RESET pulse width # - more vendors and models available and in popular use, # suggests "one third" or "two thirds" ratio would be most robust, # sample "a little before" the bit half? reset pulse width may need # to become an option? matrices and/or fast refresh environments # may want to experiment with back to back pixel streams import sigrokdecode as srd from common.srdhelper import bitpack_msb class SamplerateError(Exception): pass class DecoderError(Exception): pass ( ANN_BIT, ANN_RESET, ANN_RGB, ) = range(3) class Decoder(srd.Decoder): api_version = 3 id = 'rgb_led_ws281x' name = 'RGB LED (WS281x)' longname = 'RGB LED string decoder (WS281x)' desc = 'RGB LED string protocol (WS281x).' license = 'gplv3+' inputs = ['logic'] outputs = [] tags = ['Display', 'IC'] channels = ( {'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'}, ) annotations = ( ('bit', 'Bit'), ('reset', 'RESET'), ('rgb', 'RGB'), ) annotation_rows = ( ('bits', 'Bits', (ANN_BIT, ANN_RESET,)), ('rgb-vals', 'RGB values', (ANN_RGB,)), ) options = ( {'id': 'wireorder', 'desc': 'colour components order (wire)', 'default': 'GRB', 'values': ('BGR', 'BRG', 'GBR', 'GRB', 'RBG', 'RGB', 'RWBG', 'RGBW')}, {'id': 'textorder', 'desc': 'components output order (text)', 'default': 'RGB', 'values': ('wire', 'RGB[W]', 'RGB', 'RGBW', 'RGWB')}, ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.bits = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def putg(self, ss, es, cls, text): self.put(ss, es, self.out_ann, [cls, text]) def handle_bits(self): if len(self.bits) < self.need_bits: return ss_packet, es_packet = self.bits[0][1], self.bits[-1][2] r, g, b, w = 0, 0, 0, None comps = [] for i, c in enumerate(self.wireformat): first_idx, after_idx = 8 * i, 8 * i + 8 comp_bits = self.bits[first_idx:after_idx] comp_ss, comp_es = comp_bits[0][1], comp_bits[-1][2] comp_value = bitpack_msb(comp_bits, 0) comp_item = (comp_ss, comp_es, comp_value) comps.append(comp_item) if c.lower() == 'r': r = comp_value elif c.lower() == 'g': g = comp_value elif c.lower() == 'b': b = comp_value elif c.lower() == 'w': w = comp_value wt = '' if w is None else '{:02x}'.format(w) if self.textformat == 'wire': rgb_text = ['{:02x}'.format(c[-1]) for c in comps] rgb_text = '#' + ''.join(rgb_text) else: rgb_text = self.textformat.format(r = r, g = g, b = b, w = w, wt = wt) if rgb_text: self.putg(ss_packet, es_packet, ANN_RGB, [rgb_text]) self.bits.clear() def handle_bit(self, ss, es, value, ann_late = False): if not ann_late: text = ['{:d}'.format(value)] self.putg(ss, es, ANN_BIT, text) item = (value, ss, es) self.bits.append(item) self.handle_bits() if ann_late: text = ['{:d}'.format(value)] self.putg(ss, es, ANN_BIT, text) def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') # Preprocess options here, to simplify logic which executes # much later in loops while settings have the same values. wireorder = self.options['wireorder'].lower() self.wireformat = [c for c in wireorder if c in 'rgbw'] self.need_bits = len(self.wireformat) * 8 textorder = self.options['textorder'].lower() if textorder == 'wire': self.textformat = 'wire' elif textorder == 'rgb[w]': self.textformat = '#{r:02x}{g:02x}{b:02x}{wt:s}' else: self.textformat = { # "Obvious" permutations of R/G/B. 'bgr': '#{b:02x}{g:02x}{r:02x}', 'brg': '#{b:02x}{r:02x}{g:02x}', 'gbr': '#{g:02x}{b:02x}{r:02x}', 'grb': '#{g:02x}{r:02x}{b:02x}', 'rbg': '#{r:02x}{b:02x}{g:02x}', 'rgb': '#{r:02x}{g:02x}{b:02x}', # RGB plus White. Only one of them useful? 'rgbw': '#{r:02x}{g:02x}{b:02x}{w:02x}', # Weird RGBW permutation for compatibility to test case. # Neither used RGBW nor the 'wire' order. Obsolete now? 'rgwb': '#{r:02x}{g:02x}{w:02x}{b:02x}', }.get(textorder, None) if self.textformat is None: raise DecoderError('Unsupported text output format.') # Either check for edges which communicate bit values, or for # long periods of idle level which represent a reset pulse. # Track the left-most, right-most, and inner edge positions of # a bit. The positive period's width determines the bit's value. # Initially synchronize to the input stream by searching for a # low period, which preceeds a data bit or starts a reset pulse. # Don't annotate the very first reset pulse, but process it. We # may not see the right-most edge of a data bit when reset is # adjacent to that bit time. cond_bit_starts = {0: 'r'} cond_inbit_edge = {0: 'f'} samples_625ns = int(self.samplerate * 625e-9) samples_50us = round(self.samplerate * 50e-6) cond_reset_pulse = {'skip': samples_50us + 1} conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse] ss_bit, inv_bit, es_bit = None, None, None pin, = self.wait({0: 'l'}) inv_bit = self.samplenum check_reset = False while True: pin, = self.wait(conds) # Check RESET condition. Manufacturers may disagree on the # minimal pulse width. 50us are recommended in datasheets, # experiments suggest the limit is around 10us. # When the RESET pulse is adjacent to the low phase of the # last bit time, we have no appropriate condition for the # bit time's end location. That's why this BIT's annotation # is shorter (only spans the high phase), and the RESET # annotation immediately follows (spans from the falling edge # to the end of the minimum RESET pulse width). if check_reset and self.matched[2]: es_bit = inv_bit ss_rst, es_rst = inv_bit, self.samplenum if ss_bit and inv_bit and es_bit: # Decode last bit value. Use the last processed bit's # width for comparison when available. Fallback to an # arbitrary threshold otherwise (which can result in # false detection of value 1 for those captures where # high and low pulses are of similar width). duty = inv_bit - ss_bit thres = samples_625ns if self.bits: period = self.bits[-1][2] - self.bits[-1][1] thres = period * 0.5 bit_value = 1 if duty >= thres else 0 self.handle_bit(ss_bit, inv_bit, bit_value, True) if ss_rst and es_rst: text = ['RESET', 'RST', 'R'] self.putg(ss_rst, es_rst, ANN_RESET, text) check_reset = False self.bits.clear() ss_bit, inv_bit, es_bit = None, None, None # Rising edge starts a bit time. Falling edge ends its high # period. Get the previous bit's duty cycle and thus its # bit value when the next bit starts. if self.matched[0]: # and pin: check_reset = False if ss_bit and inv_bit: # Got a previous bit? Handle it. es_bit = self.samplenum period = es_bit - ss_bit duty = inv_bit - ss_bit # Ideal duty for T0H: 33%, T1H: 66%. bit_value = 1 if (duty / period) > 0.5 else 0 self.handle_bit(ss_bit, es_bit, bit_value) ss_bit, inv_bit, es_bit = self.samplenum, None, None if self.matched[1]: # and not pin: check_reset = True inv_bit = self.samplenum