## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2016 Vladimir Ermakov ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import bitpack_msb class SamplerateError(Exception): pass ( ANN_BIT, ANN_RESET, ANN_RGB, ) = range(3) class Decoder(srd.Decoder): api_version = 3 id = 'rgb_led_ws281x' name = 'RGB LED (WS281x)' longname = 'RGB LED string decoder (WS281x)' desc = 'RGB LED string protocol (WS281x).' license = 'gplv3+' inputs = ['logic'] outputs = [] tags = ['Display', 'IC'] channels = ( {'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'}, ) annotations = ( ('bit', 'Bit'), ('reset', 'RESET'), ('rgb', 'RGB'), ) annotation_rows = ( ('bits', 'Bits', (ANN_BIT, ANN_RESET,)), ('rgb-vals', 'RGB values', (ANN_RGB,)), ) options = ( {'id': 'type', 'desc': 'RGB or RGBW', 'default': 'RGB', 'values': ('RGB', 'RGBW')}, ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.bits = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def putg(self, ss, es, cls, text): self.put(ss, es, self.out_ann, [cls, text]) def handle_bits(self): if len(self.bits) < self.need_bits: return grb = bitpack_msb(self.bits, 0) if self.options['type'] == 'RGB': rgb = (grb & 0xff0000) >> 8 | (grb & 0x00ff00) << 8 | (grb & 0x0000ff) text = '#{:06x}'.format(rgb) else: rgb = (grb & 0xff0000) >> 8 | (grb & 0x00ff00) << 8 | (grb & 0xff0000ff) text = '#{:08x}'.format(rgb) ss_packet, es_packet = self.bits[0][1], self.bits[-1][2] self.putg(ss_packet, es_packet, ANN_RGB, [text]) self.bits.clear() def handle_bit(self, ss, es, value, ann_late = False): if not ann_late: text = ['{:d}'.format(value)] self.putg(ss, es, ANN_BIT, text) item = (value, ss, es) self.bits.append(item) self.handle_bits() if ann_late: text = ['{:d}'.format(value)] self.putg(ss, es, ANN_BIT, text) def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') self.need_bits = len(self.options['type']) * 8 # Either check for edges which communicate bit values, or for # long periods of idle level which represent a reset pulse. # Track the left-most, right-most, and inner edge positions of # a bit. The positive period's width determines the bit's value. # Initially synchronize to the input stream by searching for a # low period, which preceeds a data bit or starts a reset pulse. # Don't annotate the very first reset pulse, but process it. We # may not see the right-most edge of a data bit when reset is # adjacent to that bit time. cond_bit_starts = {0: 'r'} cond_inbit_edge = {0: 'f'} samples_625ns = int(self.samplerate * 625e-9) samples_50us = round(self.samplerate * 50e-6) cond_reset_pulse = {'skip': samples_50us + 1} conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse] ss_bit, inv_bit, es_bit = None, None, None pin, = self.wait({0: 'l'}) inv_bit = self.samplenum check_reset = False while True: pin, = self.wait(conds) # Check RESET condition. Manufacturers may disagree on the # minimal pulse width. 50us are recommended in datasheets, # experiments suggest the limit is around 10us. # When the RESET pulse is adjacent to the low phase of the # last bit time, we have no appropriate condition for the # bit time's end location. That's why this BIT's annotation # is shorter (only spans the high phase), and the RESET # annotation immediately follows (spans from the falling edge # to the end of the minimum RESET pulse width). if check_reset and self.matched[2]: es_bit = inv_bit ss_rst, es_rst = inv_bit, self.samplenum if ss_bit and inv_bit and es_bit: # Decode last bit value. Use the last processed bit's # width for comparison when available. Fallback to an # arbitrary threshold otherwise (which can result in # false detection of value 1 for those captures where # high and low pulses are of similar width). duty = inv_bit - ss_bit thres = samples_625ns if self.bits: period = self.bits[-1][2] - self.bits[-1][1] thres = period * 0.5 bit_value = 1 if duty >= thres else 0 self.handle_bit(ss_bit, inv_bit, bit_value, True) if ss_rst and es_rst: text = ['RESET', 'RST', 'R'] self.putg(ss_rst, es_rst, ANN_RESET, text) check_reset = False self.bits.clear() ss_bit, inv_bit, es_bit = None, None, None # Rising edge starts a bit time. Falling edge ends its high # period. Get the previous bit's duty cycle and thus its # bit value when the next bit starts. if self.matched[0]: # and pin: check_reset = False if ss_bit and inv_bit: # Got a previous bit? Handle it. es_bit = self.samplenum period = es_bit - ss_bit duty = inv_bit - ss_bit # Ideal duty for T0H: 33%, T1H: 66%. bit_value = 1 if (duty / period) > 0.5 else 0 self.handle_bit(ss_bit, es_bit, bit_value) ss_bit, inv_bit, es_bit = self.samplenum, None, None if self.matched[1]: # and not pin: check_reset = True inv_bit = self.samplenum