## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2014 Torsten Duwe ## Copyright (C) 2014 Sebastien Bourdelin ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd class Decoder(srd.Decoder): api_version = 3 id = 'pwm' name = 'PWM' longname = 'Pulse-width modulation' desc = 'Analog level encoded in duty cycle percentage.' license = 'gplv2+' inputs = ['logic'] outputs = ['pwm'] channels = ( {'id': 'data', 'name': 'Data', 'desc': 'Data line'}, ) options = ( {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high', 'values': ('active-low', 'active-high')}, ) annotations = ( ('duty-cycle', 'Duty cycle'), ('period', 'Period'), ) annotation_rows = ( ('duty-cycle', 'Duty cycle', (0,)), ('period', 'Period', (1,)), ) binary = ( ('raw', 'RAW file'), ) def __init__(self): self.ss_block = self.es_block = None def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_average = \ self.register(srd.OUTPUT_META, meta=(float, 'Average', 'PWM base (cycle) frequency')) def putx(self, data): self.put(self.ss_block, self.es_block, self.out_ann, data) def putp(self, period_t): # Adjust granularity. if period_t == 0 or period_t >= 1: period_s = '%.1f s' % (period_t) elif period_t <= 1e-12: period_s = '%.1f fs' % (period_t * 1e15) elif period_t <= 1e-9: period_s = '%.1f ps' % (period_t * 1e12) elif period_t <= 1e-6: period_s = '%.1f ns' % (period_t * 1e9) elif period_t <= 1e-3: period_s = '%.1f μs' % (period_t * 1e6) else: period_s = '%.1f ms' % (period_t * 1e3) self.put(self.ss_block, self.es_block, self.out_ann, [1, [period_s]]) def putb(self, data): self.put(self.ss_block, self.es_block, self.out_binary, data) def decode(self): num_cycles = 0 average = 0 # Wait for an "active" edge (depends on config). This starts # the first full period of the inspected signal waveform. self.wait({0: 'f' if self.options['polarity'] == 'active-low' else 'r'}) self.first_samplenum = self.samplenum # Keep getting samples for the period's middle and terminal edges. # At the same time that last sample starts the next period. while True: # Get the next two edges. Setup some variables that get # referenced in the calculation and in put() routines. start_samplenum = self.samplenum self.wait({0: 'e'}) end_samplenum = self.samplenum self.wait({0: 'e'}) self.ss_block = start_samplenum self.es_block = self.samplenum # Calculate the period, the duty cycle, and its ratio. period = self.samplenum - start_samplenum duty = end_samplenum - start_samplenum ratio = float(duty / period) # Report the duty cycle in percent. percent = float(ratio * 100) self.putx([0, ['%f%%' % percent]]) # Report the duty cycle in the binary output. self.putb([0, bytes([int(ratio * 256)])]) # Report the period in units of time. period_t = float(period / self.samplerate) self.putp(period_t) # Update and report the new duty cycle average. num_cycles += 1 average += percent self.put(self.first_samplenum, self.es_block, self.out_average, float(average / num_cycles))