## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2016 Daniel Schulte ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from collections import namedtuple class Ann: BIT, START, STOP, PARITY_OK, PARITY_ERR, DATA, WORD = range(7) Bit = namedtuple('Bit', 'val ss es') class Decoder(srd.Decoder): api_version = 3 id = 'ps2' name = 'PS/2' longname = 'PS/2' desc = 'PS/2 keyboard/mouse interface.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['PC'] channels = ( {'id': 'clk', 'name': 'Clock', 'desc': 'Clock line'}, {'id': 'data', 'name': 'Data', 'desc': 'Data line'}, ) annotations = ( ('bit', 'Bit'), ('start-bit', 'Start bit'), ('stop-bit', 'Stop bit'), ('parity-ok', 'Parity OK bit'), ('parity-err', 'Parity error bit'), ('data-bit', 'Data bit'), ('word', 'Word'), ) annotation_rows = ( ('bits', 'Bits', (0,)), ('fields', 'Fields', (1, 2, 3, 4, 5, 6)), ) def __init__(self): self.reset() def reset(self): self.bits = [] self.bitcount = 0 def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putb(self, bit, ann_idx): b = self.bits[bit] self.put(b.ss, b.es, self.out_ann, [ann_idx, [str(b.val)]]) def putx(self, bit, ann): self.put(self.bits[bit].ss, self.bits[bit].es, self.out_ann, ann) def handle_bits(self, datapin): # Ignore non start condition bits (useful during keyboard init). if self.bitcount == 0 and datapin == 1: return # Store individual bits and their start/end samplenumbers. self.bits.append(Bit(datapin, self.samplenum, self.samplenum)) # Fix up end sample numbers of the bits. if self.bitcount > 0: b = self.bits[self.bitcount - 1] self.bits[self.bitcount - 1] = Bit(b.val, b.ss, self.samplenum) if self.bitcount == 11: self.bitwidth = self.bits[1].es - self.bits[2].es b = self.bits[-1] self.bits[-1] = Bit(b.val, b.ss, b.es + self.bitwidth) # Find all 11 bits. Start + 8 data + odd parity + stop. if self.bitcount < 11: self.bitcount += 1 return # Extract data word. word = 0 for i in range(8): word |= (self.bits[i + 1].val << i) # Calculate parity. parity_ok = (bin(word).count('1') + self.bits[9].val) % 2 == 1 # Emit annotations. for i in range(11): self.putb(i, Ann.BIT) self.putx(0, [Ann.START, ['Start bit', 'Start', 'S']]) self.put(self.bits[1].ss, self.bits[8].es, self.out_ann, [Ann.WORD, ['Data: %02x' % word, 'D: %02x' % word, '%02x' % word]]) if parity_ok: self.putx(9, [Ann.PARITY_OK, ['Parity OK', 'Par OK', 'P']]) else: self.putx(9, [Ann.PARITY_ERR, ['Parity error', 'Par err', 'PE']]) self.putx(10, [Ann.STOP, ['Stop bit', 'Stop', 'St', 'T']]) self.bits, self.bitcount = [], 0 def decode(self): while True: # Sample data bits on the falling clock edge (assume the device # is the transmitter). Expect the data byte transmission to end # at the rising clock edge. Cope with the absence of host activity. _, data_pin = self.wait({0: 'f'}) self.handle_bits(data_pin) if self.bitcount == 1 + 8 + 1 + 1: _, data_pin = self.wait({0: 'r'}) self.handle_bits(data_pin)