## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2013 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # Parallel (sync) bus protocol decoder import sigrokdecode as srd ''' Protocol output format: Packet: [, ] , - 'ITEM', [, ] - 'WORD', [, , ] : - A single item (a number). It can be of arbitrary size. The max. number of bits in this item is specified in . : - The size of an item (in bits). For a 4-bit parallel bus this is 4, for a 16-bit parallel bus this is 16, and so on. : - A single word (a number). It can be of arbitrary size. The max. number of bits in this word is specified in . The (exact) number of items in this word is specified in . : - The size of a word (in bits). For a 2-item word with 8-bit items is 16, for a 3-item word with 4-bit items is 12, and so on. : - The size of a word (in number of items). For a 4-item word (no matter how many bits each item consists of) is 4, for a 7-item word is 7, and so on. ''' def probe_list(num_probes): l = [] for i in range(num_probes): d = {'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i} l.append(d) return l class Decoder(srd.Decoder): api_version = 1 id = 'parallel' name = 'Parallel' longname = 'Parallel sync bus' desc = 'Generic parallel synchronous bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['parallel'] probes = [ {'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}, ] optional_probes = probe_list(8) options = { 'clock_edge': ['Clock edge to sample on', 'rising'], 'wordsize': ['Word size of the data', 1], 'endianness': ['Endianness of the data', 'little'], 'format': ['Data format', 'hex'], } annotations = [ ['items', 'Items'], ['words', 'Words'], ] def __init__(self): self.oldclk = None self.items = [] self.itemcount = 0 self.saved_item = None self.samplenum = 0 self.oldpins = None self.ss_item = self.es_item = None self.first = True self.state = 'IDLE' def start(self, metadata): self.out_proto = self.add(srd.OUTPUT_PROTO, 'parallel') self.out_ann = self.add(srd.OUTPUT_ANN, 'parallel') def report(self): pass def putpb(self, data): self.put(self.ss_item, self.es_item, self.out_proto, data) def putb(self, data): self.put(self.ss_item, self.es_item, self.out_ann, data) def putpw(self, data): self.put(self.ss_word, self.es_word, self.out_proto, data) def putw(self, data): self.put(self.ss_word, self.es_word, self.out_ann, data) def handle_bits(self, datapins): # If this is the first item in a word, save its sample number. if self.itemcount == 0: self.ss_word = self.samplenum # Get the bits for this item. item, used_pins = 0, datapins.count(b'\x01') + datapins.count(b'\x00') for i in range(used_pins): item |= datapins[i] << i self.items.append(item) self.itemcount += 1 if self.first == True: # Save the start sample and item for later (no output yet). self.ss_item = self.samplenum self.first = False self.saved_item = item else: # Output the saved item (from the last CLK edge to the current). self.es_item = self.samplenum self.putpb(['ITEM', self.saved_item]) self.putb([0, ['%X' % self.saved_item]]) self.ss_item = self.samplenum self.saved_item = item endian, ws = self.options['endianness'], self.options['wordsize'] # Get as many items as the configured wordsize says. if self.itemcount < ws: return # Output annotations/proto for a word (a collection of items). word = 0 for i in range(ws): if endian == 'little': word |= self.items[i] << ((ws - 1 - i) * used_pins) elif endian == 'big': word |= self.items[i] << (i * used_pins) self.es_word = self.samplenum # self.putpw(['WORD', word]) # self.putw([1, ['%X' % word]]) self.ss_word = self.samplenum self.itemcount, self.items = 0, [] def find_clk_edge(self, clk, datapins): # Ignore sample if the clock pin hasn't changed. if clk == self.oldclk: return self.oldclk = clk # Sample data on rising/falling clock edge (depends on config). c = self.options['clock_edge'] if c == 'rising' and clk == 0: # Sample on rising clock edge. return elif c == 'falling' and clk == 1: # Sample on falling clock edge. return # Found the correct clock edge, now get the bits. self.handle_bits(datapins) def decode(self, ss, es, data): for (self.samplenum, pins) in data: # Ignore identical samples early on (for performance reasons). if self.oldpins == pins: continue self.oldpins = pins # State machine. if self.state == 'IDLE': self.find_clk_edge(pins[0], pins[1:]) else: raise Exception('Invalid state: %s' % self.state)