## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2013-2016 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import bitpack ''' OUTPUT_PYTHON format: Packet: [, ] , - 'ITEM', [, ] - 'WORD', [, , ] : - A single item (a number). It can be of arbitrary size. The max. number of bits in this item is specified in . : - The size of an item (in bits). For a 4-bit parallel bus this is 4, for a 16-bit parallel bus this is 16, and so on. : - A single word (a number). It can be of arbitrary size. The max. number of bits in this word is specified in . The (exact) number of items in this word is specified in . : - The size of a word (in bits). For a 2-item word with 8-bit items is 16, for a 3-item word with 4-bit items is 12, and so on. : - The size of a word (in number of items). For a 4-item word (no matter how many bits each item consists of) is 4, for a 7-item word is 7, and so on. ''' NUM_CHANNELS = 8 class Pin: CLOCK = 0 DATA_0 = CLOCK + 1 DATA_N = DATA_0 + NUM_CHANNELS # BEWARE! DATA_N points _beyond_ the data partition (Python range(3) # semantics, useful to have to simplify other code locations). RESET = DATA_N class Ann: ITEM, WORD = range(2) class ChannelError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'parallel' name = 'Parallel' longname = 'Parallel sync bus' desc = 'Generic parallel synchronous bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['parallel'] tags = ['Util'] optional_channels = tuple( [{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] + [ {'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i} for i in range(NUM_CHANNELS) ] + [{'id': 'rst', 'name': 'RST', 'desc': 'RESET line'}] ) options = ( {'id': 'clock_edge', 'desc': 'Clock edge to sample on', 'default': 'rising', 'values': ('rising', 'falling', 'either')}, {'id': 'reset_polarity', 'desc': 'Reset line polarity', 'default': 'low-active', 'values': ('low-active', 'high-active')}, {'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)', 'default': 0}, {'id': 'endianness', 'desc': 'Data endianness', 'default': 'little', 'values': ('little', 'big')}, ) annotations = ( ('item', 'Item'), ('word', 'Word'), ) annotation_rows = ( ('items', 'Items', (Ann.ITEM,)), ('words', 'Words', (Ann.WORD,)), ) def __init__(self): self.reset() def reset(self): self.items = [] self.saved_item = None self.ss_item = self.es_item = None self.saved_word = None self.ss_word = self.es_word = None self.first = True def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def putpb(self, data): self.put(self.ss_item, self.es_item, self.out_python, data) def putb(self, data): self.put(self.ss_item, self.es_item, self.out_ann, data) def putpw(self, data): self.put(self.ss_word, self.es_word, self.out_python, data) def putw(self, data): self.put(self.ss_word, self.es_word, self.out_ann, data) def handle_bits(self, item, used_pins): # If a word was previously accumulated, then emit its annotation # now after its end samplenumber became available. if self.saved_word is not None: if self.options['wordsize'] > 0: self.es_word = self.samplenum self.putw([Ann.WORD, [self.fmt_word.format(self.saved_word)]]) self.putpw(['WORD', self.saved_word]) self.saved_word = None # Defer annotations for individual items until the next sample # is taken, and the previous sample's end samplenumber has # become available. if self.first: # Save the start sample and item for later (no output yet). self.ss_item = self.samplenum self.first = False self.saved_item = item elif self.saved_item is None: pass else: # Output the saved item (from the last CLK edge to the current). self.es_item = self.samplenum self.putpb(['ITEM', self.saved_item]) self.putb([Ann.ITEM, [self.fmt_item.format(self.saved_item)]]) self.ss_item = self.samplenum self.saved_item = item # Get as many items as the configured wordsize specifies. if not self.items: self.ss_word = self.samplenum self.items.append(item) ws = self.options['wordsize'] if len(self.items) < ws: return # Collect words and prepare annotation details, but defer emission # until the end samplenumber becomes available. endian = self.options['endianness'] if endian == 'big': self.items.reverse() word = sum([self.items[i] << (i * used_pins) for i in range(ws)]) self.saved_word = word self.items = [] def decode(self): # Determine which (optional) channels have input data. Insist in # a non-empty input data set. Cope with sparse connection maps. # Store enough state to later "compress" sampled input data. data_indices = [ idx if self.has_channel(idx) else None for idx in range(Pin.DATA_0, Pin.DATA_N) ] has_data = [idx for idx in data_indices if idx is not None] if not has_data: raise ChannelError('Need at least one data channel.') max_connected = max(has_data) # Pre-determine which input data to strip off, the width of # individual items and multiplexed words, as well as format # strings here. This simplifies call sites which run in tight # loops later. upper_data_bound = max_connected + 1 num_item_bits = upper_data_bound - Pin.DATA_0 num_word_items = self.options['wordsize'] num_word_bits = num_item_bits * num_word_items num_digits = (num_item_bits + 4 - 1) // 4 self.fmt_item = "{{:0{}x}}".format(num_digits) num_digits = (num_word_bits + 4 - 1) // 4 self.fmt_word = "{{:0{}x}}".format(num_digits) # Determine .wait() conditions, depending on the presence of a # clock signal. Either inspect samples on the configured edge of # the clock, or inspect samples upon ANY edge of ANY of the pins # which provide input data. conds = [] cond_idx_clock = None cond_idx_data_0 = None cond_idx_data_N = None cond_idx_reset = None has_clock = self.has_channel(Pin.CLOCK) if has_clock: cond_idx_clock = len(conds) edge = { 'rising': 'r', 'falling': 'f', 'either': 'e', }.get(self.options['clock_edge']) conds.append({Pin.CLOCK: edge}) else: cond_idx_data_0 = len(conds) conds.extend([{idx: 'e'} for idx in has_data]) cond_idx_data_N = len(conds) has_reset = self.has_channel(Pin.RESET) if has_reset: cond_idx_reset = len(conds) conds.append({Pin.RESET: 'e'}) reset_active = { 'low-active': 0, 'high-active': 1, }.get(self.options['reset_polarity']) # Keep processing the input stream. Assume "always zero" for # not-connected input lines. Pass data bits (all inputs except # clock and reset) to the handle_bits() method. Handle reset # edges first and data changes then, within the same iteration. # This results in robust operation for low-oversampled input. in_reset = False while True: pins = self.wait(conds) clock_edge = cond_idx_clock is not None and self.matched[cond_idx_clock] data_edge = cond_idx_data_0 is not None and [idx for idx in range(cond_idx_data_0, cond_idx_data_N) if self.matched[idx]] reset_edge = cond_idx_reset is not None and self.matched[cond_idx_reset] if reset_edge: in_reset = pins[Pin.RESET] == reset_active if in_reset: self.handle_bits(None, num_item_bits) self.saved_item = None self.saved_word = None self.first = True if in_reset: continue if clock_edge or data_edge: data_bits = [0 if idx is None else pins[idx] for idx in data_indices] data_bits = data_bits[:num_item_bits] item = bitpack(data_bits) self.handle_bits(item, num_item_bits)