## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2018 Steve R ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd ''' OUTPUT_PYTHON format: Samples: The Samples array is sent when a DECODE_TIMEOUT occurs. [, , ] is the sample number of the start of the decoded bit. This may not line up with the pulses that were converted into the decoded bit particularly for Manchester encoding. is the sample number of the end of the decoded bit. is a single character string which is the state of the decoded bit. This can be '0' zero or low '1' one or high 'E' Error or invalid. This can be caused by missing transitions or the wrong pulse lengths according to the rules for the particular encoding. In some cases this is intentional (Oregon 1 preamble) and is part of the sync pattern. In other cases the signal could simply be broken. If there are more than self.max_errors (default 5) in decoding then the OUTPUT_PYTHON is not sent as the data is assumed to be worthless. There also needs to be a low for five times the preamble period at the end of each set of pulses to trigger a DECODE_TIMEOUT and get the OUTPUT_PYTHON sent. ''' class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'ook' name = 'OOK' longname = 'On-off keying' desc = 'On-off keying protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['ook'] tags = ['Encoding'] channels = ( {'id': 'data', 'name': 'Data', 'desc': 'Data line'}, ) annotations = ( ('frame', 'Frame'), ('info', 'Info'), ('1111', '1111'), ('1010', '1010'), ('diffman', 'Diff man'), ('nrz', 'NRZ'), ) annotation_rows = ( ('frames', 'Framing', (0,)), ('info-vals', 'Info', (1,)), ('man1111', 'Man 1111', (2,)), ('man1010', 'Man 1010', (3,)), ('diffmans', 'Diff man', (4,)), ('nrz-vals', 'NRZ', (5,)), ) binary = ( ('pulse-lengths', 'Pulse lengths'), ) options = ( {'id': 'invert', 'desc': 'Invert data', 'default': 'no', 'values': ('no', 'yes')}, {'id': 'decodeas', 'desc': 'Decode type', 'default': 'Manchester', 'values': ('NRZ', 'Manchester', 'Diff Manchester')}, {'id': 'preamble', 'desc': 'Preamble', 'default': 'auto', 'values': ('auto', '1010', '1111')}, {'id': 'preamlen', 'desc': 'Filter length', 'default': '7', 'values': ('0', '3', '4', '5', '6', '7', '8', '9', '10')}, {'id': 'diffmanvar', 'desc': 'Transition at start', 'default': '1', 'values': ('1', '0')}, ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.ss = self.es = -1 self.ss_1111 = self.ss_1010 = -1 self.samplenumber_last = None self.sample_first = None self.sample_high = 0 self.sample_low = 0 self.edge_count = 0 self.word_first = None self.word_count = 0 self.state = 'IDLE' self.lstate = None self.lstate_1010 = None self.insync = 0 # Preamble in sync flag self.man_errors = 0 self.man_errors_1010 = 0 self.preamble = [] # Preamble buffer self.half_time = -1 # Half time for man 1111 self.half_time_1010 = 0 # Half time for man 1010 self.pulse_lengths = [] # Pulse lengths self.decoded = [] # Decoded stream self.decoded_1010 = [] # Decoded stream self.diff_man_trans = '0' # Transition self.diff_man_len = 1 # Length of pulse in half clock periods self.max_errors = 5 # Max number of errors to output OOK def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_binary = self.register(srd.OUTPUT_BINARY) self.invert = self.options['invert'] self.decodeas = self.options['decodeas'] self.preamble_val = self.options['preamble'] self.preamble_len = self.options['preamlen'] self.diffmanvar = self.options['diffmanvar'] def putx(self, data): self.put(self.ss, self.es, self.out_ann, data) def putp(self, data): self.put(self.ss, self.es, self.out_python, data) def dump_pulse_lengths(self): if self.samplerate: self.pulse_lengths[-1] = self.sample_first # Fix final pulse length. s = 'Pulses(us)=' s += ','.join(str(int(int(x) * 1000000 / self.samplerate)) for x in self.pulse_lengths) s += '\n' self.put(self.samplenum - 10, self.samplenum, self.out_binary, [0, bytes([ord(c) for c in s])]) def decode_nrz(self, start, samples, state): self.pulse_lengths.append(samples) # Use different high and low widths to compensate skewed waveforms. dsamples = self.sample_high if state == '1' else self.sample_low self.ss, self.es = start, start + samples while samples > dsamples * 0.5: if samples >= dsamples * 1.5: # More than one bit. self.es = self.ss + dsamples self.putx([5, [state]]) self.decoded.append([self.ss, self.es, state]) self.edge_count += 1 elif samples >= dsamples * 0.5 and samples < dsamples * 1.5: # Last bit. self.putx([5, [state]]) self.decoded.append([self.ss, self.es, state]) self.edge_count += 1 else: self.edge_count += 1 samples -= dsamples self.ss += dsamples self.es += dsamples # Ensure 2nd row doesn't go past end of 1st row. if self.es > self.samplenum: self.es = self.samplenum if self.state == 'DECODE_TIMEOUT': # Five bits - reset. self.ss = self.decoded[0][0] self.es = self.decoded[len(self.decoded) - 1][1] self.dump_pulse_lengths() self.putp(self.decoded) self.decode_timeout() break def lock_onto_preamble(self, samples, state): # Filters and recovers clock. self.edge_count += 1 l2s = 5 # Max ratio of long to short pulses. # Filter incoming pulses to remove random noise. if self.state == 'DECODE_TIMEOUT': self.preamble = [] self.edge_count = 0 self.word_first = self.samplenum self.sample_first = self.samplenum - self.samplenumber_last self.state = 'WAITING_FOR_PREAMBLE' self.man_errors = 0 pre_detect = int(self.preamble_len) # Number of valid pulses to detect. pre_samples = self.samplenum - self.samplenumber_last if len(self.preamble) > 0: if (pre_samples * l2s < self.preamble[-1][1] or self.preamble[-1][1] * l2s < pre_samples): # Garbage in. self.put(self.samplenum, self.samplenum, self.out_ann, [0, ['R']]) # Display resets. self.preamble = [] # Clear buffer. self.preamble.append([self.samplenumber_last, pre_samples, state]) self.edge_count = 0 self.samplenumber_last = self.samplenum self.word_first = self.samplenum else: self.preamble.append([self.samplenumber_last, pre_samples, state]) else: self.preamble.append([self.samplenumber_last, pre_samples, state]) pre = self.preamble if len(self.preamble) == pre_detect: # Have a valid series of pulses. if self.preamble[0][2] == '1': self.sample_high = self.preamble[0][1] # Allows skewed pulses. self.sample_low = self.preamble[1][1] else: self.sample_high = self.preamble[1][1] self.sample_low = self.preamble[0][1] self.edge_count = 0 for i in range(len(self.preamble)): if i > 1: if (pre[i][1] > pre[i - 2][1] * 1.25 or pre[i][1] * 1.25 < pre[i - 2][1]): # Adjust ref width. if pre[i][2] == '1': self.sample_high = pre[i][1] else: self.sample_low = pre[i][1] # Display start of preamble. if self.decodeas == 'NRZ': self.decode_nrz(pre[i][0], pre[i][1], pre[i][2]) if self.decodeas == 'Manchester': self.decode_manchester(pre[i][0], pre[i][1], pre[i][2]) if self.decodeas == 'Diff Manchester': self.es = pre[i][0] + pre[i][1] self.decode_diff_manchester(pre[i][0], pre[i][1], pre[i][2]) # Used to timeout signal. self.sample_first = int((self.sample_high + self.sample_low)/2) self.insync = 1 self.state = 'DECODING' self.lstate = state self.lstate_1010 = state def decode_diff_manchester(self, start, samples, state): self.pulse_lengths.append(samples) # Use different high and low widths to compensate skewed waveforms. dsamples = self.sample_high if state == '1' else self.sample_low self.es = start + samples p_length = round(samples / dsamples) # Find relative pulse length. if self.edge_count == 0: self.diff_man_trans = '1' # Very first pulse must be a transition. self.diff_man_len = 1 # Must also be a half pulse. self.ss = start elif self.edge_count % 2 == 1: # Time to make a decision. if self.diffmanvar == '0': # Transition at self.ss is a zero. self.diff_man_trans = '0' if self.diff_man_trans == '1' else '1' if self.diff_man_len == 1 and p_length == 1: self.putx([4, [self.diff_man_trans]]) self.decoded.append([self.ss, self.es, self.diff_man_trans]) self.diff_man_trans = '1' elif self.diff_man_len == 1 and p_length == 2: self.es -= int(samples / 2) self.putx([4, [self.diff_man_trans]]) self.decoded.append([self.ss, self.es, self.diff_man_trans]) self.diff_man_trans = '0' self.edge_count += 1 # Add a virt edge to keep in sync with clk. elif self.diff_man_len == 2 and p_length == 1: self.putx([4, [self.diff_man_trans]]) self.decoded.append([self.ss, self.es, self.diff_man_trans]) self.diff_man_trans = '1' elif self.diff_man_len == 2 and p_length == 2: # Double illegal E E. self.es -= samples self.putx([4, ['E']]) self.decoded.append([self.ss, self.es, 'E']) self.ss = self.es self.es += samples self.putx([4, ['E']]) self.decoded.append([self.ss, self.es, 'E']) self.diff_man_trans = '1' elif self.diff_man_len == 1 and p_length > 4: if self.state == 'DECODE_TIMEOUT': self.es = self.ss + 2 * self.sample_first self.putx([4, [self.diff_man_trans]]) # Write error. self.decoded.append([self.ss, self.es, self.diff_man_trans]) self.ss = self.decoded[0][0] self.es = self.decoded[len(self.decoded) - 1][1] self.dump_pulse_lengths() if self.man_errors < self.max_errors: self.putp(self.decoded) else: error_message = 'Probably not Diff Manchester encoded' self.ss = self.word_first self.putx([1, [error_message]]) self.decode_timeout() self.diff_man_trans = '1' self.ss = self.es self.diff_man_len = p_length # Save the previous length. self.edge_count += 1 def decode_manchester_sim(self, start, samples, state, dsamples, half_time, lstate, ss, pream): ook_bit = [] errors = 0 if self.edge_count == 0: half_time += 1 if samples > 0.75 * dsamples and samples <= 1.5 * dsamples: # Long p. half_time += 2 if half_time % 2 == 0: # Transition. es = start else: es = start + int(samples / 2) if ss == start: lstate = 'E' es = start + samples if not (self.edge_count == 0 and pream == '1010'): # Skip first p. ook_bit = [ss, es, lstate] lstate = state ss = es elif samples > 0.25 * dsamples and samples <= 0.75 * dsamples: # Short p. half_time += 1 if (half_time % 2 == 0): # Transition. es = start + samples ook_bit = [ss, es, lstate] lstate = state ss = es else: # 1st half. ss = start lstate = state else: # Too long or too short - error. errors = 1 if self.state != 'DECODE_TIMEOUT': # Error condition. lstate = 'E' es = ss + samples else: # Assume final half bit buried in timeout pulse. es = ss + self.sample_first ook_bit = [ss, es, lstate] ss = es return (half_time, lstate, ss, ook_bit, errors) def decode_manchester(self, start, samples, state): self.pulse_lengths.append(samples) # Use different high and low widths to compensate skewed waveforms. dsamples = self.sample_high if state == '1' else self.sample_low if self.preamble_val != '1010': # 1111 preamble is half clock T. (self.half_time, self.lstate, self.ss_1111, ook_bit, errors) = ( self.decode_manchester_sim(start, samples, state, dsamples * 2, self.half_time, self.lstate, self.ss_1111, '1111')) self.man_errors += errors if ook_bit != []: self.decoded.append([ook_bit[0], ook_bit[1], ook_bit[2]]) if self.preamble_val != '1111': # 1010 preamble is clock T. (self.half_time_1010, self.lstate_1010, self.ss_1010, ook_bit, errors) = ( self.decode_manchester_sim(start, samples, state, dsamples, self.half_time_1010, self.lstate_1010, self.ss_1010, '1010')) self.man_errors_1010 += errors if ook_bit != []: self.decoded_1010.append([ook_bit[0], ook_bit[1], ook_bit[2]]) self.edge_count += 1 # Stream display and save ook_bit. if ook_bit != []: self.ss, self.es = ook_bit[0], ook_bit[1] if self.preamble_val == '1111': self.putx([2, [ook_bit[2]]]) if self.preamble_val == '1010': self.putx([3, [ook_bit[2]]]) if self.state == 'DECODE_TIMEOUT': # End of packet. self.dump_pulse_lengths() decoded = [] # If 1010 preamble has less errors use it. if (self.preamble_val == '1010' or (self.man_errors_1010 < self.max_errors and self.man_errors_1010 < self.man_errors and len(self.decoded_1010) > 0)): decoded = self.decoded_1010 man_errors = self.man_errors_1010 d_row = 3 else: decoded = self.decoded man_errors = self.man_errors d_row = 2 if self.preamble_val == 'auto': # Display OOK packet. for i in range(len(decoded)): self.ss, self.es = decoded[i][0], decoded[i][1] self.putx([d_row, [decoded[i][2]]]) if (man_errors < self.max_errors and len(decoded) > 0): self.ss, self.es = decoded[0][0], decoded[len(decoded) - 1][1] self.putp(decoded) else: error_message = 'Not Manchester encoded or wrong preamble' self.ss = self.word_first self.putx([1, [error_message]]) self.put(self.es, self.es, self.out_ann, [0, ['T']]) # Mark timeout. self.decode_timeout() def decode_timeout(self): self.word_count = 0 self.samplenumber_last = None self.edge_count = 0 self.man_errors = 0 # Clear the bit error counters. self.man_errors_1010 = 0 self.state = 'IDLE' self.wait({0: 'e'}) # Get rid of long pulse. self.samplenumber_last = self.samplenum self.word_first = self.samplenum self.insync = 0 # Preamble in sync flag self.preamble = [] # Preamble buffer self.half_time = -1 # Half time for man 1111 self.half_time_1010 = 0 # Half time for man 1010 self.decoded = [] # Decoded bits self.decoded_1010 = [] # Decoded bits for man 1010 self.pulse_lengths = [] def decode(self): while True: if self.edge_count == 0: # Waiting for a signal. pin = self.wait({0: 'e'}) self.state = 'DECODING' else: pin = self.wait([{0: 'e'}, {'skip': 5 * self.sample_first}]) if self.matched[1] and not self.matched[0]: # No edges for 5 p's. self.state = 'DECODE_TIMEOUT' if not self.samplenumber_last: # Set counters to start of signal. self.samplenumber_last = self.samplenum self.word_first = self.samplenum continue samples = self.samplenum - self.samplenumber_last if not self.sample_first: # Get number of samples for first pulse. self.sample_first = samples pinstate = pin[0] if self.state == 'DECODE_TIMEOUT': # No edge so flip the state. pinstate = int(not pinstate) if self.invert == 'yes': # Invert signal. pinstate = int(not pinstate) state = '0' if pinstate else '1' # No preamble filtering or checking and no skew correction. if self.preamble_len == '0': self.sample_high = self.sample_first self.sample_low = self.sample_first self.insync = 0 if self.insync == 0: self.lock_onto_preamble(samples, state) else: if self.decodeas == 'NRZ': self.decode_nrz(self.samplenumber_last, samples, state) if self.decodeas == 'Manchester': self.decode_manchester(self.samplenumber_last, samples, state) if self.decodeas == 'Diff Manchester': self.decode_diff_manchester(self.samplenumber_last, samples, state) self.samplenumber_last = self.samplenum