## ## This file is part of the sigrok project. ## ## Copyright (C) 2011-2012 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # 1-Wire protocol decoder import sigrokdecode as srd # Annotation feed formats ANN_ASCII = 0 ANN_DEC = 1 ANN_HEX = 2 ANN_OCT = 3 ANN_BITS = 4 class Decoder(srd.Decoder): api_version = 1 id = 'onewire' name = '1-Wire' longname = '' desc = '1-Wire bus and MicroLan' license = 'gplv2+' inputs = ['logic'] outputs = ['onewire'] probes = [ {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'}, ] optional_probes = [ {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'}, ] options = { 'overdrive': ['Overdrive', 0], } annotations = [ ['ASCII', 'Data bytes as ASCII characters'], ['Decimal', 'Databytes as decimal, integer values'], ['Hex', 'Data bytes in hex format'], ['Octal', 'Data bytes as octal numbers'], ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], ] def __init__(self, **kwargs): # Common variables self.samplenum = 0 # Link layer variables self.lnk_state = 'WAIT FOR FALLING EDGE' self.lnk_event = 'NONE' self.lnk_fall = 0 self.lnk_present = 0 self.lnk_bit = 0 # Network layer variables self.net_state = 'ROM COMMAND' self.net_event = 'NONE' self.net_cnt = 0 self.net_search = "P" self.net_data_p = 0x0 self.net_data_n = 0x0 self.net_data = 0x0 # Transport layer variables self.trn_state = 'WAIT FOR EVENT' self.trn_event = 'NONE' def start(self, metadata): self.samplerate = metadata['samplerate'] self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire') self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire') # The width of the 1-Wire time base (30us) in number of samples. # TODO: optimize this value self.time_base = float(self.samplerate) * float(0.000030) print ("DEBUG: samplerate = %d, time_base = %d" % (self.samplerate, self.time_base)) def report(self): pass def decode(self, ss, es, data): for (self.samplenum, (owr, pwr)) in data: # print ("DEBUG: sample = %d, owr = %d, pwr = %d, lnk_fall = %d, lnk_state = %s" % (self.samplenum, owr, pwr, self.lnk_fall, self.lnk_state)) # Data link layer # Clear events. self.lnk_event = "NONE" # State machine. if self.lnk_state == 'WAIT FOR FALLING EDGE': # The start of a cycle is a falling edge. if (owr == 0): # Save the sample number for the falling edge. self.lnk_fall = self.samplenum # Go to waiting for sample time self.lnk_state = 'WAIT FOR DATA SAMPLE' self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['LNK: NEGEDGE: ']]) elif self.lnk_state == 'WAIT FOR DATA SAMPLE': # Data should be sample one 'time unit' after a falling edge if (self.samplenum - self.lnk_fall == 0.5*self.time_base): self.lnk_bit = owr & 0x1 self.lnk_event = "DATA BIT" if (self.lnk_bit) : self.lnk_state = 'WAIT FOR FALLING EDGE' else : self.lnk_state = 'WAIT FOR RISING EDGE' self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['LNK: BIT: ' + str(self.lnk_bit)]]) elif self.lnk_state == 'WAIT FOR RISING EDGE': # The end of a cycle is a rising edge. if (owr == 1): # A reset cycle is longer than 8T. if (self.samplenum - self.lnk_fall > 8*self.time_base): # Save the sample number for the falling edge. self.lnk_rise = self.samplenum # Send a reset event to the next protocol layer. self.lnk_event = "RESET" self.lnk_state = "WAIT FOR PRESENCE DETECT" self.put(self.lnk_fall, self.samplenum, self.out_proto, ['RESET']) self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['LNK: RESET: ']]) print ("DEBUG: RESET t0=%d t+=%d" % (self.lnk_fall, self.samplenum)) # Reset the timer. self.lnk_fall = self.samplenum # Otherwise this is assumed to be a data bit. else : self.lnk_state = "WAIT FOR FALLING EDGE" elif self.lnk_state == 'WAIT FOR PRESENCE DETECT': # Data should be sample one 'time unit' after a falling edge if (self.samplenum - self.lnk_rise == 2.5*self.time_base): self.lnk_present = owr & 0x1 # Save the sample number for the falling edge. if not (self.lnk_present) : self.lnk_fall = self.samplenum # create presence detect event #self.lnk_event = "PRESENCE DETECT" if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE' else : self.lnk_state = 'WAIT FOR RISING EDGE' self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['LNK: PRESENCE: ' + str(self.lnk_present)]]) print ("DEBUG: PRESENCE=%d t0=%d t+=%d" % (self.lnk_present, self.lnk_fall, self.samplenum)) else: raise Exception('Invalid lnk_state: %d' % self.lnk_state) # Network layer # Clear events. self.net_event = "RESET" # State machine. if (self.lnk_event == "RESET"): self.net_state = "ROM COMMAND" self.net_search = "P" self.net_cnt = 0 elif (self.lnk_event == "DATA BIT"): if (self.net_state == "ROM COMMAND"): if (self.collect_data(8)): # self.put(self.lnk_fall, self.samplenum, # self.out_proto, ['LNK: COMMAND', self.net_data]) self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['NET: ROM COMMAND: 0x' + hex(self.net_data)]]) print ("DEBUG: ROM_COMMAND=0x%02x t0=%d t+=%d" % (self.net_data, self.lnk_fall, self.samplenum)) if (self.net_data in [0x33, 0x0f]): # READ ROM self.net_state = "ADDRESS" elif (self.net_data == 0xcc): # SKIP ROM self.net_state = "CONTROL COMMAND" elif (self.net_data == 0x55): # MATCH ROM self.net_state = "ADDRESS" elif (self.net_data == 0xf0): # SEARCH ROM self.net_state = "SEARCH" elif (self.net_data == 0x3c): # OVERDRIVE SKIP ROM self.net_state = "CONTROL COMMAND" elif (self.net_data == 0x69): # OVERDRIVE MATCH ROM self.net_state = "ADDRESS" elif (self.net_state == "ADDRESS"): # family code (1B) + serial number (6B) + CRC (1B) if (self.collect_data((1+6+1)*8)): self.net_family_code = (self.net_data >> (( 0)*8)) & 0xff self.net_serial_number = (self.net_data >> (( 1)*8)) & 0xffffffffffff self.net_crc = (self.net_data >> ((6+1)*8)) & 0xff print ("DEBUG: net_family_code =0x%001x" % (self.net_family_code )) print ("DEBUG: net_serial_number=0x%012x" % (self.net_serial_number)) print ("DEBUG: net_crc =0x%001x" % (self.net_crc )) self.net_state = "CONTROL COMMAND" elif (self.net_state == "SEARCH"): # family code (1B) + serial number (6B) + CRC (1B) if (self.collect_search((1+6+1)*8)): self.net_family_code = (self.net_data >> (( 0)*8)) & 0xff self.net_serial_number = (self.net_data >> (( 1)*8)) & 0xffffffffffff self.net_crc = (self.net_data >> ((6+1)*8)) & 0xff print ("DEBUG: net_family_code =0x%001x" % (self.net_family_code )) print ("DEBUG: net_serial_number=0x%012x" % (self.net_serial_number)) print ("DEBUG: net_crc =0x%001x" % (self.net_crc )) self.net_state = "CONTROL COMMAND" elif (self.net_state == "CONTROL COMMAND"): if (self.collect_data(8)): # self.put(self.lnk_fall, self.samplenum, # self.out_proto, ['LNK: COMMAND', self.net_data]) self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_DEC, ['NET: FUNCTION COMMAND: 0x' + hex(self.net_data)]]) print ("DEBUG: FUNCTION_COMMAND=0x%02x t0=%d t+=%d" % (self.net_data, self.lnk_fall, self.samplenum)) if (self.net_data == 0x44): # CONVERT TEMPERATURE self.net_state = "TODO" elif (self.net_data == 0x48): # COPY SCRATCHPAD self.net_state = "TODO" elif (self.net_data == 0x4e): # WRITE SCRATCHPAD self.net_state = "TODO" elif (self.net_data == 0xbe): # READ SCRATCHPAD self.net_state = "TODO" elif (self.net_data == 0xb8): # RECALL E2 self.net_state = "TODO" elif (self.net_data == 0xb4): # READ POWER SUPPLY self.net_state = "TODO" else: raise Exception('Invalid net_state: %s' % self.net_state) elif (self.lnk_event != "NONE"): raise Exception('Invalid lnk_event: %s' % self.lnk_event) # Link/Network layer data collector def collect_data (self, length): #print ("DEBUG: BIT=%d t0=%d t+=%d" % (self.lnk_bit, self.lnk_fall, self.samplenum)) self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt) self.net_cnt = self.net_cnt + 1 if (self.net_cnt == length): self.net_data = self.net_data & ((1<