## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011-2012 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd # Dict which maps command IDs to their names and descriptions. cmds = { 0x06: ('WREN', 'Write enable'), 0x04: ('WRDI', 'Write disable'), 0x9f: ('RDID', 'Read identification'), 0x05: ('RDSR', 'Read status register'), 0x01: ('WRSR', 'Write status register'), 0x03: ('READ', 'Read data'), 0x0b: ('FAST/READ', 'Fast read data'), 0xbb: ('2READ', '2x I/O read'), 0x20: ('SE', 'Sector erase'), 0xd8: ('BE', 'Block erase'), 0x60: ('CE', 'Chip erase'), 0xc7: ('CE2', 'Chip erase'), # Alternative command ID 0x02: ('PP', 'Page program'), 0xad: ('CP', 'Continuously program mode'), 0xb9: ('DP', 'Deep power down'), 0xab: ('RDP/RES', 'Release from deep powerdown / Read electronic ID'), 0x90: ('REMS', 'Read electronic manufacturer & device ID'), 0xef: ('REMS2', 'Read ID for 2x I/O mode'), 0xb1: ('ENSO', 'Enter secured OTP'), 0xc1: ('EXSO', 'Exit secured OTP'), 0x2b: ('RDSCUR', 'Read security register'), 0x2f: ('WRSCUR', 'Write security register'), 0x70: ('ESRY', 'Enable SO to output RY/BY#'), 0x80: ('DSRY', 'Disable SO to output RY/BY#'), } device_name = { 0x14: 'MX25L1605D', 0x15: 'MX25L3205D', 0x16: 'MX25L6405D', } def decode_status_reg(data): # TODO: Additional per-bit(s) self.put() calls with correct start/end. # Bits[0:0]: WIP (write in progress) s = 'W' if (data & (1 << 0)) else 'No w' ret = '%srite operation in progress.\n' % s # Bits[1:1]: WEL (write enable latch) s = '' if (data & (1 << 1)) else 'not ' ret += 'Internal write enable latch is %sset.\n' % s # Bits[5:2]: Block protect bits # TODO: More detailed decoding (chip-dependent). ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2) # Bits[6:6]: Continuously program mode (CP mode) s = '' if (data & (1 << 6)) else 'not ' ret += 'Device is %sin continuously program mode (CP mode).\n' % s # Bits[7:7]: SRWD (status register write disable) s = 'not ' if (data & (1 << 7)) else '' ret += 'Status register writes are %sallowed.\n' % s return ret class Decoder(srd.Decoder): api_version = 1 id = 'mx25lxx05d' name = 'MX25Lxx05D' longname = 'Macronix MX25Lxx05D' desc = 'SPI (NOR) flash chip protocol.' license = 'gplv2+' inputs = ['spi', 'logic'] outputs = ['mx25lxx05d'] probes = [] optional_probes = [ {'id': 'hold', 'name': 'HOLD#', 'desc': 'Pause device w/o deselecting it'}, {'id': 'wp_acc', 'name': 'WP#/ACC', 'desc': 'Write protect'}, ] options = {} annotations = [ ['text', 'Human-readable text'], ['verbose-decode', 'Decoded register bits, read/write data'], ['warnings', 'Human-readable warnings'], ] def __init__(self, **kwargs): self.state = None self.cmdstate = 1 self.addr = 0 self.data = [] def start(self): # self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): # Simplification, most annotations span exactly one SPI byte/packet. self.put(self.ss, self.es, self.out_ann, data) def handle_wren(self, mosi, miso): self.putx([0, ['Command: %s' % cmds[self.state][1]]]) self.state = None def handle_wrdi(self, mosi, miso): pass # TODO # TODO: Check/display device ID / name def handle_rdid(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.start_sample = self.ss self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate == 2: # Byte 2: Slave sends the JEDEC manufacturer ID. self.putx([0, ['Manufacturer ID: 0x%02x' % miso]]) elif self.cmdstate == 3: # Byte 3: Slave sends the memory type (0x20 for this chip). self.putx([0, ['Memory type: 0x%02x' % miso]]) elif self.cmdstate == 4: # Byte 4: Slave sends the device ID. self.device_id = miso self.putx([0, ['Device ID: 0x%02x' % miso]]) if self.cmdstate == 4: # TODO: Check self.device_id is valid & exists in device_names. # TODO: Same device ID? Check! d = 'Device: Macronix %s' % device_name[self.device_id] self.put(self.start_sample, self.es, self.out_ann, [0, [d]]) self.state = None else: self.cmdstate += 1 def handle_rdsr(self, mosi, miso): # Read status register: Master asserts CS#, sends RDSR command, # reads status register byte. If CS# is kept asserted, the status # register can be read continuously / multiple times in a row. # When done, the master de-asserts CS# again. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate >= 2: # Bytes 2-x: Slave sends status register as long as master clocks. if self.cmdstate <= 3: # TODO: While CS# asserted. self.putx([0, ['Status register: 0x%02x' % miso]]) self.putx([1, [decode_status_reg(miso)]]) if self.cmdstate == 3: # TODO: If CS# got de-asserted. self.state = None return self.cmdstate += 1 def handle_wrsr(self, mosi, miso): pass # TODO def handle_read(self, mosi, miso): # Read data bytes: Master asserts CS#, sends READ command, sends # 3-byte address, reads >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends read address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Read address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: self.putx([0, ['Read address: 0x%06x' % self.addr]]) self.addr = 0 elif self.cmdstate >= 5: # Bytes 5-x: Master reads data bytes (until CS# de-asserted). # TODO: For now we hardcode 256 bytes per READ command. if self.cmdstate <= 256 + 4: # TODO: While CS# asserted. self.data.append(miso) # self.putx([0, ['New read byte: 0x%02x' % miso]]) if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted. # s = ', '.join(map(hex, self.data)) s = ''.join(map(chr, self.data)) self.putx([0, ['Read data']]) self.putx([1, ['Read data: %s' % s]]) self.data = [] self.state = None return self.cmdstate += 1 def handle_fast_read(self, mosi, miso): pass # TODO def handle_2read(self, mosi, miso): pass # TODO # TODO: Warn/abort if we don't see the necessary amount of bytes. # TODO: Warn if WREN was not seen before. def handle_se(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.addr = 0 self.start_sample = self.ss self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends sectror address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Sector address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr) self.put(self.start_sample, self.es, self.out_ann, [0, [d]]) # TODO: Max. size depends on chip, check that too if possible. if self.addr % 4096 != 0: # Sector addresses must be 4K-aligned (same for all 3 chips). d = 'Warning: Invalid sector address!' self.put(self.start_sample, self.es, self.out_ann, [2, [d]]) self.state = None else: self.cmdstate += 1 def handle_be(self, mosi, miso): pass # TODO def handle_ce(self, mosi, miso): pass # TODO def handle_ce2(self, mosi, miso): pass # TODO def handle_pp(self, mosi, miso): # Page program: Master asserts CS#, sends PP command, sends 3-byte # page address, sends >= 1 data bytes, de-asserts CS#. if self.cmdstate == 1: # Byte 1: Master sends command ID. self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3, 4): # Bytes 2/3/4: Master sends page address (24bits, MSB-first). self.addr |= (mosi << ((4 - self.cmdstate) * 8)) # self.putx([0, ['Page address, byte %d: 0x%02x' % \ # (4 - self.cmdstate, mosi)]]) if self.cmdstate == 4: self.putx([0, ['Page address: 0x%06x' % self.addr]]) self.addr = 0 elif self.cmdstate >= 5: # Bytes 5-x: Master sends data bytes (until CS# de-asserted). # TODO: For now we hardcode 256 bytes per page / PP command. if self.cmdstate <= 256 + 4: # TODO: While CS# asserted. self.data.append(mosi) # self.putx([0, ['New data byte: 0x%02x' % mosi]]) if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted. # s = ', '.join(map(hex, self.data)) s = ''.join(map(chr, self.data)) self.putx([0, ['Page data']]) self.putx([1, ['Page data: %s' % s]]) self.data = [] self.state = None return self.cmdstate += 1 def handle_cp(self, mosi, miso): pass # TODO def handle_dp(self, mosi, miso): pass # TODO def handle_rdp_res(self, mosi, miso): pass # TODO def handle_rems(self, mosi, miso): if self.cmdstate == 1: # Byte 1: Master sends command ID. self.start_sample = self.ss self.putx([0, ['Command: %s' % cmds[self.state][1]]]) elif self.cmdstate in (2, 3): # Bytes 2/3: Master sends two dummy bytes. # TODO: Check dummy bytes? Check reply from device? self.putx([0, ['Dummy byte: %s' % mosi]]) elif self.cmdstate == 4: # Byte 4: Master sends 0x00 or 0x01. # 0x00: Master wants manufacturer ID as first reply byte. # 0x01: Master wants device ID as first reply byte. self.manufacturer_id_first = True if (mosi == 0x00) else False d = 'manufacturer' if (mosi == 0x00) else 'device' self.putx([0, ['Master wants %s ID first' % d]]) elif self.cmdstate == 5: # Byte 5: Slave sends manufacturer ID (or device ID). self.ids = [miso] d = 'Manufacturer' if self.manufacturer_id_first else 'Device' self.putx([0, ['%s ID' % d]]) elif self.cmdstate == 6: # Byte 6: Slave sends device ID (or manufacturer ID). self.ids.append(miso) d = 'Manufacturer' if self.manufacturer_id_first else 'Device' self.putx([0, ['%s ID' % d]]) if self.cmdstate == 6: self.end_sample = self.es id = self.ids[1] if self.manufacturer_id_first else self.ids[0] self.putx([0, ['Device: Macronix %s' % device_name[id]]]) self.state = None else: self.cmdstate += 1 def handle_rems2(self, mosi, miso): pass # TODO def handle_enso(self, mosi, miso): pass # TODO def handle_exso(self, mosi, miso): pass # TODO def handle_rdscur(self, mosi, miso): pass # TODO def handle_wrscur(self, mosi, miso): pass # TODO def handle_esry(self, mosi, miso): pass # TODO def handle_dsry(self, mosi, miso): pass # TODO def decode(self, ss, es, data): ptype, mosi, miso = data # if ptype == 'DATA': # self.putx([0, ['MOSI: 0x%02x, MISO: 0x%02x' % (mosi, miso)]]) # if ptype == 'CS-CHANGE': # if mosi == 1 and miso == 0: # self.putx([0, ['Asserting CS#']]) # elif mosi == 0 and miso == 1: # self.putx([0, ['De-asserting CS#']]) if ptype != 'DATA': return self.ss, self.es = ss, es # If we encountered a known chip command, enter the resp. state. if self.state == None: self.state = mosi self.cmdstate = 1 # Handle commands. if self.state in cmds: s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_') handle_reg = getattr(self, s) handle_reg(mosi, miso) else: self.putx([0, ['Unknown command: 0x%02x' % mosi]]) self.state = None