## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2013-2016 Uwe Hermann ## Copyright (C) 2016 Chris Dreher ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from .lists import * RX = 0 TX = 1 class Decoder(srd.Decoder): api_version = 3 id = 'midi' name = 'MIDI' longname = 'Musical Instrument Digital Interface' desc = 'Musical Instrument Digital Interface (MIDI) protocol.' license = 'gplv2+' inputs = ['uart'] outputs = ['midi'] tags = ['Logic', 'Bus', 'Audio'] annotations = ( ('text-verbose', 'Human-readable text (verbose)'), ('text-sysreal-verbose', 'Human-readable SysReal text (verbose)'), ('text-error', 'Human-readable Error text'), ) annotation_rows = ( ('normal', 'Normal', (0, 2)), ('sys-real', 'SysReal', (1,)), ) def __init__(self): self.reset() def reset(self): self.state = 'IDLE' self.status_byte = 0 self.explicit_status_byte = False self.cmd = [] self.ss = None self.es = None self.ss_block = None self.es_block = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss_block, self.es_block, self.out_ann, data) def get_note_name(self, channel, note): if channel != 10: return chromatic_notes[note] else: return 'assuming ' + percussion_notes.get(note, 'undefined') def check_for_garbage_flush(self, is_flushed): if is_flushed: if self.explicit_status_byte: self.cmd.insert(0, self.status_byte) self.handle_garbage_msg(None) def soft_clear_status_byte(self): self.explicit_status_byte = False def hard_clear_status_byte(self): self.status_byte = 0 self.explicit_status_byte = False def set_status_byte(self, newbyte): self.status_byte = newbyte self.explicit_status_byte = True def handle_channel_msg_0x80(self, is_flushed): # Note off: 8n kk vv # n = channel, kk = note, vv = velocity c = self.cmd if len(c) < 2: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 note, velocity = c[0], c[1] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s (note = %d \'%s\', velocity = %d)' % \ (chan, status_bytes[msg][0], note, note_name, velocity), 'ch %d: %s %d, velocity = %d' % \ (chan, status_bytes[msg][1], note, velocity), '%d: %s %d, vel %d' % \ (chan, status_bytes[msg][2], note, velocity)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0x90(self, is_flushed): # Note on: 9n kk vv # n = channel, kk = note, vv = velocity # If velocity == 0 that actually means 'note off', though. c = self.cmd if len(c) < 2: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 note, velocity = c[0], c[1] s = status_bytes[0x80] if (velocity == 0) else status_bytes[msg] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s (note = %d \'%s\', velocity = %d)' % \ (chan, s[0], note, note_name, velocity), 'ch %d: %s %d, velocity = %d' % \ (chan, s[1], note, velocity), '%d: %s %d, vel %d' % \ (chan, s[2], note, velocity)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0xa0(self, is_flushed): # Polyphonic key pressure / aftertouch: An kk vv # n = channel, kk = polyphonic key pressure, vv = pressure value c = self.cmd if len(c) < 2: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 note, pressure = c[0], c[1] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s of %d for note = %d \'%s\'' % \ (chan, status_bytes[msg][0], pressure, note, note_name), 'ch %d: %s %d for note %d' % \ (chan, status_bytes[msg][1], pressure, note), '%d: %s %d, N %d' % \ (chan, status_bytes[msg][2], pressure, note)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_controller_0x44(self): # Legato footswitch: Bn 44 vv # n = channel, vv = value (<= 0x3f: normal, > 0x3f: legato) c = self.cmd msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 vv = c[1] t = ('normal', 'no') if vv <= 0x3f else ('legato', 'yes') self.putx([0, ['Channel %d: %s \'%s\' = %s' % \ (chan, status_bytes[msg][0], control_functions[0x44][0], t[0]), 'ch %d: %s \'%s\' = %s' % \ (chan, status_bytes[msg][1], control_functions[0x44][1], t[0]), '%d: %s \'%s\' = %s' % \ (chan, status_bytes[msg][2], control_functions[0x44][2], t[1])]]) def handle_controller_0x54(self): # Portamento control (PTC): Bn 54 kk # n = channel, kk = source note for pitch reference c = self.cmd msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 kk = c[1] kk_name = self.get_note_name(chan, kk) self.putx([0, ['Channel %d: %s \'%s\' (source note = %d / %s)' % \ (chan, status_bytes[msg][0], control_functions[0x54][0], kk, kk_name), 'ch %d: %s \'%s\' (source note = %d)' % \ (chan, status_bytes[msg][1], control_functions[0x54][1], kk), '%d: %s \'%s\' (src N %d)' % \ (chan, status_bytes[msg][2], control_functions[0x54][2], kk)]]) def handle_controller_generic(self): c = self.cmd msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 fn, param = c[0], c[1] default_name = 'undefined' ctrl_fn = control_functions.get(fn, default_name) if ctrl_fn == default_name: ctrl_fn = ('undefined 0x%02x' % fn, 'undef 0x%02x' % fn, '0x%02x' % fn) self.putx([0, ['Channel %d: %s \'%s\' (param = 0x%02x)' % \ (chan, status_bytes[msg][0], ctrl_fn[0], param), 'ch %d: %s \'%s\' (param = 0x%02x)' % \ (chan, status_bytes[msg][1], ctrl_fn[1], param), '%d: %s \'%s\' is 0x%02x' % \ (chan, status_bytes[msg][2], ctrl_fn[2], param)]]) def handle_channel_mode(self): # Channel Mode: Bn mm vv # n = channel, mm = mode number (120 - 127), vv = value c = self.cmd msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 mm, vv = c[0], c[1] mode_fn = control_functions.get(mm, ('undefined', 'undef', 'undef')) # Decode the value based on the mode number. vv_string = ('', '') if mm == 122: # mode = local control? if vv == 0: vv_string = ('off', 'off') elif vv == 127: # mode = poly mode on? vv_string = ('on', 'on') else: vv_string = ('(non-standard param value of 0x%02x)' % vv, '0x%02x' % vv) elif mm == 126: # mode = mono mode on? if vv != 0: vv_string = ('(%d channels)' % vv, '(%d ch)' % vv) else: vv_string = ('(channels \'basic\' through 16)', '(ch \'basic\' thru 16)') elif vv != 0: # All other channel mode messages expect vv == 0. vv_string = ('(non-standard param value of 0x%02x)' % vv, '0x%02x' % vv) self.putx([0, ['Channel %d: %s \'%s\' %s' % \ (chan, status_bytes[msg][0], mode_fn[0], vv_string[0]), 'ch %d: %s \'%s\' %s' % \ (chan, status_bytes[msg][1], mode_fn[1], vv_string[1]), '%d: %s \'%s\' %s' % \ (chan, status_bytes[msg][2], mode_fn[2], vv_string[1])]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0xb0(self, is_flushed): # Control change (or channel mode messages): Bn cc vv # n = channel, cc = control number (0 - 119), vv = control value c = self.cmd if len(c) < 2: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es if c[0] in range(0x78, 0x7f + 1): self.handle_channel_mode() return handle_ctrl = getattr(self, 'handle_controller_0x%02x' % c[0], self.handle_controller_generic) handle_ctrl() self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0xc0(self, is_flushed): # Program change: Cn pp # n = channel, pp = program number (0 - 127) c = self.cmd if len(c) < 1: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 pp = self.cmd[0] + 1 change_type = 'instrument' name = '' if chan != 10: # channel != percussion name = gm_instruments.get(pp, 'undefined') else: change_type = 'drum kit' name = drum_kit.get(pp, 'undefined') self.putx([0, ['Channel %d: %s to %s %d (assuming %s)' % \ (chan, status_bytes[msg][0], change_type, pp, name), 'ch %d: %s to %s %d' % \ (chan, status_bytes[msg][1], change_type, pp), '%d: %s %d' % \ (chan, status_bytes[msg][2], pp)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0xd0(self, is_flushed): # Channel pressure / aftertouch: Dn vv # n = channel, vv = pressure value c = self.cmd if len(c) < 1: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 vv = self.cmd[0] self.putx([0, ['Channel %d: %s %d' % (chan, status_bytes[msg][0], vv), 'ch %d: %s %d' % (chan, status_bytes[msg][1], vv), '%d: %s %d' % (chan, status_bytes[msg][2], vv)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_0xe0(self, is_flushed): # Pitch bend change: En ll mm # n = channel, ll = pitch bend change LSB, mm = pitch bend change MSB c = self.cmd if len(c) < 2: self.check_for_garbage_flush(is_flushed) return self.es_block = self.es msg, chan = self.status_byte & 0xf0, (self.status_byte & 0x0f) + 1 ll, mm = self.cmd[0], self.cmd[1] decimal = (mm << 7) + ll self.putx([0, ['Channel %d: %s 0x%02x 0x%02x (%d)' % \ (chan, status_bytes[msg][0], ll, mm, decimal), 'ch %d: %s 0x%02x 0x%02x (%d)' % \ (chan, status_bytes[msg][1], ll, mm, decimal), '%d: %s (%d)' % \ (chan, status_bytes[msg][2], decimal)]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg_generic(self, is_flushed): # TODO: It should not be possible to hit this code. # It currently can not be unit tested. msg_type = self.status_byte & 0xf0 self.es_block = self.es self.putx([2, ['Unknown channel message type: 0x%02x' % msg_type]]) self.cmd, self.state = [], 'IDLE' self.soft_clear_status_byte() def handle_channel_msg(self, newbyte): if newbyte is not None: if newbyte >= 0x80: self.set_status_byte(newbyte) else: self.cmd.append(newbyte) msg_type = self.status_byte & 0xf0 handle_msg = getattr(self, 'handle_channel_msg_0x%02x' % msg_type, self.handle_channel_msg_generic) handle_msg(newbyte is None) def handle_sysex_msg(self, newbyte): # SysEx message: 1 status byte, 1-3 manuf. bytes, x data bytes, EOX byte # # SysEx messages are variable length, can be terminated by EOX or # by any non-SysReal status byte, and it clears self.status_byte. # # Note: All System message codes don't utilize self.status_byte. self.hard_clear_status_byte() if newbyte != 0xf7 and newbyte is not None: # EOX self.cmd.append(newbyte) return self.es_block = self.es # Note: Unlike other methods, this code pops bytes out of self.cmd # to isolate the data. msg = self.cmd.pop(0) if len(self.cmd) < 1: self.putx([2, ['%s: truncated manufacturer code (<1 bytes)' % \ status_bytes[msg][0], '%s: truncated manufacturer (<1 bytes)' % \ status_bytes[msg][1], '%s: trunc. manu.' % status_bytes[msg][2]]]) self.cmd, self.state = [], 'IDLE' return # Extract the manufacturer name (or SysEx realtime or non-realtime). m1 = self.cmd.pop(0) manu = (m1,) if m1 == 0x00: # If byte == 0, then 2 more manufacturer bytes follow. if len(self.cmd) < 2: self.putx([2, ['%s: truncated manufacturer code (<3 bytes)' % \ status_bytes[msg][0], '%s: truncated manufacturer (<3 bytes)' % \ status_bytes[msg][1], '%s: trunc. manu.' % status_bytes[msg][2]]]) self.cmd, self.state = [], 'IDLE' return manu = (m1, self.cmd.pop(0), self.cmd.pop(0)) default_name = 'undefined' manu_name = sysex_manufacturer_ids.get(manu, default_name) if manu_name == default_name: if len(manu) == 3: manu_name = ('%s (0x%02x 0x%02x 0x%02x)' % \ (default_name, manu[0], manu[1], manu[2]), default_name) else: manu_name = ('%s (0x%02x)' % (default_name, manu[0]), default_name) else: manu_name = (manu_name, manu_name) # Extract the payload, display in 1 of 2 formats # TODO: Write methods to decode SysEx realtime & non-realtime payloads. payload0 = '' payload1 = '' while len(self.cmd) > 0: byte = self.cmd.pop(0) payload0 += '0x%02x ' % (byte) payload1 += '%02x ' % (byte) if payload0 == '': payload0 = '' payload1 = '<>' payload = (payload0, payload1) self.putx([0, ['%s: for \'%s\' with payload %s' % \ (status_bytes[msg][0], manu_name[0], payload[0]), '%s: \'%s\', payload %s' % \ (status_bytes[msg][1], manu_name[1], payload[1]), '%s: \'%s\', payload %s' % \ (status_bytes[msg][2], manu_name[1], payload[1])]]) self.cmd, self.state = [], 'IDLE' def handle_syscommon_midi_time_code_quarter_frame_msg(self, newbyte): # MIDI time code quarter frame: F1 nd # n = message type # d = values # # Note: All System message codes don't utilize self.status_byte, # and System Exclusive and System Common clear it. c = self.cmd if len(c) < 2: if newbyte is None: self.handle_garbage_msg(None) return msg = c[0] nn, dd = (c[1] & 0x70) >> 4, c[1] & 0x0f group = ('System Common', 'SysCom', 'SC') self.es_block = self.es if nn != 7: # If message type does not contain SMPTE type. self.putx([0, ['%s: %s of %s, value 0x%01x' % \ (group[0], status_bytes[msg][0], quarter_frame_type[nn][0], dd), '%s: %s of %s, value 0x%01x' % \ (group[1], status_bytes[msg][1], quarter_frame_type[nn][1], dd), '%s: %s of %s, value 0x%01x' % \ (group[2], status_bytes[msg][2], quarter_frame_type[nn][1], dd)]]) self.cmd, self.state = [], 'IDLE' return tt = (dd & 0x6) >> 1 self.putx([0, ['%s: %s of %s, value 0x%01x for %s' % \ (group[0], status_bytes[msg][0], \ quarter_frame_type[nn][0], dd, smpte_type[tt]), '%s: %s of %s, value 0x%01x for %s' % \ (group[1], status_bytes[msg][1], \ quarter_frame_type[nn][1], dd, smpte_type[tt]), '%s: %s of %s, value 0x%01x for %s' % \ (group[2], status_bytes[msg][2], \ quarter_frame_type[nn][1], dd, smpte_type[tt])]]) self.cmd, self.state = [], 'IDLE' def handle_syscommon_msg(self, newbyte): # System common messages # # There are 5 simple formats (which are directly handled here) and # 1 complex one called MIDI time code quarter frame. # # Note: While the MIDI lists 0xf7 as a "system common" message, it # is actually only used with SysEx messages so it is processed there. # # Note: All System message codes don't utilize self.status_byte. self.hard_clear_status_byte() if newbyte is not None: self.cmd.append(newbyte) c = self.cmd msg = c[0] group = ('System Common', 'SysCom', 'SC') if msg == 0xf1: # MIDI time code quarter frame self.handle_syscommon_midi_time_code_quarter_frame_msg(newbyte) return elif msg == 0xf2: # Song position pointer: F2 ll mm # ll = LSB position, mm = MSB position if len(c) < 3: if newbyte is None: self.handle_garbage_msg(None) return ll, mm = c[1], c[2] decimal = (mm << 7) + ll self.es_block = self.es self.putx([0, ['%s: %s 0x%02x 0x%02x (%d)' % \ (group[0], status_bytes[msg][0], ll, mm, decimal), '%s: %s 0x%02x 0x%02x (%d)' % \ (group[1], status_bytes[msg][1], ll, mm, decimal), '%s: %s (%d)' % \ (group[2], status_bytes[msg][2], decimal)]]) elif msg == 0xf3: # Song select: F3 ss # ss = song selection number if len(c) < 2: if newbyte is None: self.handle_garbage_msg(None) return ss = c[1] self.es_block = self.es self.putx([0, ['%s: %s number %d' % \ (group[0], status_bytes[msg][0], ss), '%s: %s number %d' % \ (group[1], status_bytes[msg][1], ss), '%s: %s # %d' % \ (group[2], status_bytes[msg][2], ss)]]) elif msg == 0xf4 or msg == 0xf5 or msg == 0xf6: # Undefined 0xf4, Undefined 0xf5, and Tune Request (respectively). # All are only 1 byte long with no data bytes. self.es_block = self.es self.putx([0, ['%s: %s' % (group[0], status_bytes[msg][0]), '%s: %s' % (group[1], status_bytes[msg][1]), '%s: %s' % (group[2], status_bytes[msg][2])]]) self.cmd, self.state = [], 'IDLE' def handle_sysrealtime_msg(self, newbyte): # System realtime message: 0b11111ttt (t = message type) # # Important: These messages are handled differently from all others # because they are allowed to temporarily interrupt other messages. # The interrupted messages resume after the realtime message is done. # Thus, they mostly leave 'self' the way it was found. # # Note: All System message codes don't utilize self.status_byte. old_ss_block, old_es_block = self.ss_block, self.es_block self.ss_block, self.es_block = self.ss, self.es group = ('System Realtime', 'SysReal', 'SR') self.putx([1, ['%s: %s' % (group[0], status_bytes[newbyte][0]), '%s: %s' % (group[1], status_bytes[newbyte][1]), '%s: %s' % (group[2], status_bytes[newbyte][2])]]) self.ss_block, self.es_block = old_ss_block, old_es_block # Deliberately not resetting self.cmd or self.state. def handle_garbage_msg(self, newbyte): # Handle messages that are either not handled or are corrupt. self.es_block = self.es if newbyte is not None: self.cmd.append(newbyte) return payload = '' max_bytes = 16 # Put a limit on the length on the hex dump. for index in range(len(self.cmd)): if index == max_bytes: payload += ' ...' break if index == 0: payload = '0x%02x' % self.cmd[index] else: payload += ' 0x%02x' % self.cmd[index] self.putx([2, ['UNHANDLED DATA: %s' % payload, 'UNHANDLED', '???', '?']]) self.cmd, self.state = [], 'IDLE' self.hard_clear_status_byte() def handle_state(self, state, newbyte): # 'newbyte' can either be: # 1. Value between 0x00-0xff, deal with the byte normally. # 2. Value of 'None' which means "flush any buffered data". if state == 'HANDLE CHANNEL MSG': self.handle_channel_msg(newbyte) elif state == 'HANDLE SYSEX MSG': self.handle_sysex_msg(newbyte) elif state == 'HANDLE SYSCOMMON MSG': self.handle_syscommon_msg(newbyte) elif state == 'HANDLE SYSREALTIME MSG': self.handle_sysrealtime_msg(newbyte) elif state == 'BUFFER GARBAGE MSG': self.handle_garbage_msg(newbyte) def get_next_state(self, newbyte): # 'newbyte' must be a valid byte between 0x00 and 0xff. # # Try to determine the state based off of the 'newbyte' parameter. if newbyte in range(0x80, 0xef + 1): return 'HANDLE CHANNEL MSG' if newbyte == 0xf0: return 'HANDLE SYSEX MSG' if newbyte in range(0xf1, 0xf7): return'HANDLE SYSCOMMON MSG' if newbyte in range(0xf8, 0xff + 1): return 'HANDLE SYSREALTIME MSG' # Passing 0xf7 is an error; messages don't start with 0xf7. if newbyte == 0xf7: return 'BUFFER GARBAGE MSG' # Next, base the state off of self.status_byte. if self.status_byte < 0x80: return 'BUFFER GARBAGE MSG' return self.get_next_state(self.status_byte) def decode(self, ss, es, data): ptype, rxtx, pdata = data state = 'IDLE' # For now, ignore all UART packets except the actual data packets. if ptype != 'DATA': return # We're only interested in the byte value (not individual bits). pdata = pdata[0] # Short MIDI overview: # - Status bytes are 0x80-0xff, data bytes are 0x00-0x7f. # - Most messages: 1 status byte, 1-2 data bytes. # - Real-time system messages: always 1 byte. # - SysEx messages: 1 status byte, n data bytes, EOX byte. # # Aspects of the MIDI protocol that complicate decoding: # - MIDI System Realtime messages can briefly interrupt other # messages already in progress. # - "Running Status" allows for omitting the status byte in most # scenarios if sequential messages have the same status byte. # - System Exclusive (SysEx) messages can be terminated by ANY # status byte (not limited to EOX byte). # State machine. if pdata >= 0x80 and pdata != 0xf7: state = self.get_next_state(pdata) if state != 'HANDLE SYSREALTIME MSG' and self.state != 'IDLE': # Flush the previous data since a new message is starting. self.handle_state(self.state, None) # Cache ss and es -after- flushing previous data. self.ss, self.es = ss, es # This is a status byte, remember the start sample. if state != 'HANDLE SYSREALTIME MSG': self.ss_block = ss elif self.state == 'IDLE' or self.state == 'BUFFER GARBAGE MSG': # Deal with "running status" or that we're buffering garbage. self.ss, self.es = ss, es if self.state == 'IDLE': self.ss_block = ss state = self.get_next_state(pdata) else: self.ss, self.es = ss, es state = self.state # Yes, this is intentionally _not_ an 'elif' here. if state != 'HANDLE SYSREALTIME MSG': self.state = state if state == 'BUFFER GARBAGE MSG': self.status_byte = 0 self.handle_state(state, pdata)