## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2013 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd from .lists import * RX = 0 TX = 1 class Decoder(srd.Decoder): api_version = 2 id = 'midi' name = 'MIDI' longname = 'Musical Instrument Digital Interface' desc = 'Musical Instrument Digital Interface (MIDI) protocol.' license = 'gplv2+' inputs = ['uart'] outputs = ['midi'] annotations = ( ('text-verbose', 'Human-readable text (verbose)'), ) def __init__(self): self.cmd = [] self.state = 'IDLE' self.ss = None self.es = None self.ss_block = None self.es_block = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss_block, self.es_block, self.out_ann, data) def get_note_name(self, channel, note): if channel != 10: return chromatic_notes[note] else: return 'assuming ' + percussion_notes.get(note, 'undefined') def handle_channel_msg_0x80(self): # Note off: 8n kk vv # n = channel, kk = note, vv = velocity c = self.cmd if len(c) < 3: return self.es_block = self.es msg, chan, note, velocity = c[0] & 0xf0, (c[0] & 0x0f) + 1, c[1], c[2] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s (note = %d \'%s\', velocity = %d)' % \ (chan, status_bytes[msg], note, note_name, velocity)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0x90(self): # Note on: 9n kk vv # n = channel, kk = note, vv = velocity # If velocity == 0 that actually means 'note off', though. c = self.cmd if len(c) < 3: return self.es_block = self.es msg, chan, note, velocity = c[0] & 0xf0, (c[0] & 0x0f) + 1, c[1], c[2] s = 'note off' if (velocity == 0) else status_bytes[msg] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s (note = %d \'%s\', velocity = %d)' % \ (chan, s, note, note_name, velocity)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0xa0(self): # Polyphonic key pressure / aftertouch: An kk vv # n = channel, kk = polyphonic key pressure, vv = pressure value c = self.cmd if len(c) < 3: return self.es_block = self.es msg, chan, note, pressure = c[0] & 0xf0, (c[0] & 0x0f) + 1, c[1], c[2] note_name = self.get_note_name(chan, note) self.putx([0, ['Channel %d: %s (note = %d \'%s\', pressure = %d)' % \ (chan, status_bytes[msg], note, note_name, pressure)]]) self.cmd, self.state = [], 'IDLE' def handle_controller_0x44(self): # Legato footswitch: Bn 44 vv # n = channel, vv = value (<= 0x3f: normal, > 0x3f: legato) chan, vv = (self.cmd[0] & 0x0f) + 1, self.cmd[2] t = 'normal' if vv <= 0x3f else 'legato' self.putx([0, ['Channel %d: control function \'%s\' = %s' % \ (chan, control_functions[0x44], t)]]) def handle_controller_0x54(self): # Portamento control (PTC): Bn 54 kk # n = channel, kk = source note for pitch reference chan, kk = (self.cmd[0] & 0x0f) + 1, self.cmd[2] kk_name = self.get_note_name(chan, kk) self.putx([0, ['Channel %d: control function \'%s\' (source note ' \ '= %d / %s)' % \ (chan, control_functions[0x54], kk, kk_name)]]) def handle_controller_generic(self): c = self.cmd chan, fn, param = (c[0] & 0x0f) + 1, c[1], c[2] default_name = 'undefined' ctrl_fn = control_functions.get(fn, default_name) if ctrl_fn == default_name: ctrl_fn = '%s 0x%02x' % (default_name, fn) self.putx([0, ['Channel %d: control change to function \'%s\' ' \ '(param = 0x%02x)' % (chan, ctrl_fn, param)]]) def handle_channel_mode(self): # Channel Mode: Bn mm vv # n = channel, mm = mode number (120 - 127), vv = value c = self.cmd chan, mm, vv = (c[0] & 0x0f) + 1, c[1], c[2] mode_fn = control_functions.get(mm, 'undefined') # Decode the value based on the mode number. vv_string = '' if mm == 122: # mode = local control? if vv == 0: vv_string = 'off' elif vv == 127: # mode = poly mode on? vv_string = 'on' else: vv_string = '(non-standard param value of 0x%02x)' % vv elif mm == 126: # mode = mono mode on? if vv != 0: vv_string = '(%d channels)' % vv else: vv_string = '(channels \'basic\' through 16)' elif vv != 0: # All other channel mode messages expect vv == 0. vv_string = '(non-standard param value of 0x%02x)' % vv self.putx([0, ['Channel %d: mode message \'%s\' %s' % \ (chan, mode_fn, vv_string)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0xb0(self): # Control change (or channel mode messages): Bn cc vv # n = channel, cc = control number (0 - 119), vv = control value c = self.cmd if len(c) < 3: return self.es_block = self.es if c[1] in range(0x78, 0x7f + 1): self.handle_channel_mode() return handle_ctrl = getattr(self, 'handle_controller_0x%02x' % c[1], self.handle_controller_generic) handle_ctrl() self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0xc0(self): # Program change: Cn pp # n = channel, pp = program number (0 - 127) c = self.cmd if len(c) < 2: return self.es_block = self.es msg, chan, pp = self.cmd[0] & 0xf0, (self.cmd[0] & 0x0f) + 1, \ self.cmd[1] + 1 change_type = 'instrument' name = '' if chan != 10: # channel != percussion name = gm_instruments.get(pp, 'undefined') else: change_type = 'drum kit' name = drum_kit.get(pp, 'undefined') self.putx([0, ['Channel %d: %s to %s %d (assuming %s)' % \ (chan, status_bytes[msg], change_type, pp, name)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0xd0(self): # Channel pressure / aftertouch: Dn vv # n = channel, vv = pressure value c = self.cmd if len(c) < 2: return self.es_block = self.es msg, chan, vv = self.cmd[0] & 0xf0, (self.cmd[0] & 0x0f) + 1, self.cmd[1] self.putx([0, ['Channel %d: %s %d' % (chan, status_bytes[msg], vv)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_0xe0(self): # Pitch bend change: En ll mm # n = channel, ll = pitch bend change LSB, mm = pitch bend change MSB c = self.cmd if len(c) < 3: return self.es_block = self.es msg, chan, ll, mm = self.cmd[0] & 0xf0, (self.cmd[0] & 0x0f) + 1, \ self.cmd[1], self.cmd[2] decimal = (mm << 7) + ll self.putx([0, ['Channel %d: %s 0x%02x 0x%02x (%d)' % \ (chan, status_bytes[msg], ll, mm, decimal)]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg_generic(self): # TODO: It should not be possible to hit this code. # It currently can not be unit tested. msg_type = self.cmd[0] & 0xf0 self.es_block = self.es self.putx([0, ['Unknown channel message type: 0x%02x' % msg_type]]) self.cmd, self.state = [], 'IDLE' def handle_channel_msg(self, newbyte): self.cmd.append(newbyte) msg_type = self.cmd[0] & 0xf0 handle_msg = getattr(self, 'handle_channel_msg_0x%02x' % msg_type, self.handle_channel_msg_generic) handle_msg() def handle_sysex_msg(self, newbyte): # SysEx message: 1 status byte, 1-3 manuf. bytes, x data bytes, EOX byte self.cmd.append(newbyte) if newbyte != 0xf7: # EOX return self.es_block = self.es # Note: Unlike other methods, this code pops bytes out of self.cmd # to isolate the data. msg, eox = self.cmd.pop(0), self.cmd.pop() if len(self.cmd) < 1: self.putx([0, ['SysEx: truncated manufacturer code (<1 bytes)']]) self.cmd, self.state = [], 'IDLE' return # Extract the manufacturer name (or SysEx realtime or non-realtime). m1 = self.cmd.pop(0) manu = (m1,) if m1 == 0x00: # If byte == 0, then 2 more manufacturer bytes follow. if len(self.cmd) < 2: self.putx([0, ['SysEx: truncated manufacturer code (<3 bytes)']]) self.cmd, self.state = [], 'IDLE' return manu = (m1, self.cmd.pop(0), self.cmd.pop(0)) default_name = 'undefined' manu_name = sysex_manufacturer_ids.get(manu, default_name) if manu_name == default_name: if len(manu) == 3: manu_name = '%s (0x%02x 0x%02x 0x%02x)' % \ (default_name, manu[0], manu[1], manu[2]) else: manu_name = '%s (0x%02x)' % (default_name, manu[0]) # Extract the payload. # TODO: Write methods to decode SysEx realtime & non-realtime payloads. payload = '' while len(self.cmd) > 0: payload += '0x%02x ' % (self.cmd.pop(0)) if payload == '': payload = '' self.putx([0, ['SysEx: for \'%s\' with payload %s' % \ (manu_name, payload)]]) self.cmd, self.state = [], 'IDLE' def handle_syscommon_midi_time_code_quarter_frame_msg(self, newbyte): # MIDI time code quarter frame: F1 nd # n = message type # d = values c = self.cmd if len(c) < 2: return msg = self.cmd[0] nn, dd = (self.cmd[1] & 0x70) >> 4, self.cmd[1] & 0x0f group = 'System Common' self.es_block = self.es if nn != 7: # If message type does not contain SMPTE type. self.putx([0, ['%s: %s of %s, value 0x%01x' % \ (group, status_bytes[msg], quarter_frame_type[nn], dd)]]) self.cmd, self.state = [], 'IDLE' return tt = (dd & 0x6) >> 1 self.putx([0, ['%s: %s of %s, value 0x%01x for %s' % \ (group, status_bytes[msg], quarter_frame_type[nn], \ dd, smpte_type[tt])]]) self.cmd, self.state = [], 'IDLE' def handle_syscommon_msg(self, newbyte): # System common messages # # There are 5 simple formats (which are directly handled here) and # 1 complex one called MIDI time code quarter frame. # # Note: While the MIDI lists 0xf7 as a "system common" message, it # is actually only used with SysEx messages so it is processed there. self.cmd.append(newbyte) msg = self.cmd[0] c = self.cmd group = 'System Common' if msg == 0xf1: # MIDI time code quarter frame self.handle_syscommon_midi_time_code_quarter_frame_msg(newbyte) return elif msg == 0xf2: # Song position pointer: F2 ll mm # ll = LSB position, mm = MSB position if len(c) < 3: return ll, mm = self.cmd[1], self.cmd[2] decimal = (mm << 7) + ll self.es_block = self.es self.putx([0, ['%s: %s 0x%02x 0x%02x (%d)' % \ (group, status_bytes[msg], ll, mm, decimal)]]) elif msg == 0xf3: # Song select: F3 ss # ss = song selection number if len(c) < 2: return ss = self.cmd[1] self.es_block = self.es self.putx([0, ['%s: %s number %d' % (group, status_bytes[msg], ss)]]) elif msg == 0xf4 or msg == 0xf5 or msg == 0xf6: # Undefined 0xf4, Undefined 0xf5, and Tune Request (respectively). # All are only 1 byte long with no data bytes. self.es_block = self.es self.putx([0, ['%s: %s' % (group, status_bytes[msg])]]) self.cmd, self.state = [], 'IDLE' def handle_sysrealtime_msg(self, newbyte): # System realtime message: 0b11111ttt (t = message type) self.es_block = self.es self.putx([0, ['System realtime message: %s' % status_bytes[newbyte]]]) self.cmd, self.state = [], 'IDLE' def decode(self, ss, es, data): ptype, rxtx, pdata = data # For now, ignore all UART packets except the actual data packets. if ptype != 'DATA': return self.ss, self.es = ss, es # We're only interested in the byte value (not individual bits). pdata = pdata[0] # Short MIDI overview: # - Status bytes are 0x80-0xff, data bytes are 0x00-0x7f. # - Most messages: 1 status byte, 1-2 data bytes. # - Real-time system messages: always 1 byte. # - SysEx messages: 1 status byte, n data bytes, EOX byte. # State machine. if self.state == 'IDLE': # Wait until we see a status byte (bit 7 must be set). if pdata < 0x80: return # TODO: How to handle? Ignore? # This is a status byte, remember the start sample. self.ss_block = ss if pdata in range(0x80, 0xef + 1): self.state = 'HANDLE CHANNEL MSG' elif pdata == 0xf0 or pdata == 0xf7: self.state = 'HANDLE SYSEX MSG' elif pdata in range(0xf1, 0xf7): self.state = 'HANDLE SYSCOMMON MSG' elif pdata in range(0xf8, 0xff + 1): self.state = 'HANDLE SYSREALTIME MSG' # Yes, this is intentionally _not_ an 'elif' here. if self.state == 'HANDLE CHANNEL MSG': self.handle_channel_msg(pdata) elif self.state == 'HANDLE SYSEX MSG': self.handle_sysex_msg(pdata) elif self.state == 'HANDLE SYSCOMMON MSG': self.handle_syscommon_msg(pdata) elif self.state == 'HANDLE SYSREALTIME MSG': self.handle_sysrealtime_msg(pdata)