## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012-2015 Uwe Hermann <uwe@hermann-uwe.de> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see <http://www.gnu.org/licenses/>. ## import sigrokdecode as srd ''' OUTPUT_PYTHON format: Packet: [<ptype>, <pdata>] <ptype>: - 'NEW STATE': <pdata> is the new state of the JTAG state machine. Valid values: 'TEST-LOGIC-RESET', 'RUN-TEST/IDLE', 'SELECT-DR-SCAN', 'CAPTURE-DR', 'SHIFT-DR', 'EXIT1-DR', 'PAUSE-DR', 'EXIT2-DR', 'UPDATE-DR', 'SELECT-IR-SCAN', 'CAPTURE-IR', 'SHIFT-IR', 'EXIT1-IR', 'PAUSE-IR', 'EXIT2-IR', 'UPDATE-IR'. - 'IR TDI': Bitstring that was clocked into the IR register. - 'IR TDO': Bitstring that was clocked out of the IR register. - 'DR TDI': Bitstring that was clocked into the DR register. - 'DR TDO': Bitstring that was clocked out of the DR register. All bitstrings are a list consisting of two items. The first is a sequence of '1' and '0' characters (the right-most character is the LSB. Example: '01110001', where 1 is the LSB). The second item is a list of ss/es values for each bit that is in the bitstring. ''' jtag_states = [ # Intro "tree" 'TEST-LOGIC-RESET', 'RUN-TEST/IDLE', # DR "tree" 'SELECT-DR-SCAN', 'CAPTURE-DR', 'UPDATE-DR', 'PAUSE-DR', 'SHIFT-DR', 'EXIT1-DR', 'EXIT2-DR', # IR "tree" 'SELECT-IR-SCAN', 'CAPTURE-IR', 'UPDATE-IR', 'PAUSE-IR', 'SHIFT-IR', 'EXIT1-IR', 'EXIT2-IR', ] class Decoder(srd.Decoder): api_version = 3 id = 'jtag' name = 'JTAG' longname = 'Joint Test Action Group (IEEE 1149.1)' desc = 'Protocol for testing, debugging, and flashing ICs.' license = 'gplv2+' inputs = ['logic'] outputs = ['jtag'] channels = ( {'id': 'tdi', 'name': 'TDI', 'desc': 'Test data input'}, {'id': 'tdo', 'name': 'TDO', 'desc': 'Test data output'}, {'id': 'tck', 'name': 'TCK', 'desc': 'Test clock'}, {'id': 'tms', 'name': 'TMS', 'desc': 'Test mode select'}, ) optional_channels = ( {'id': 'trst', 'name': 'TRST#', 'desc': 'Test reset'}, {'id': 'srst', 'name': 'SRST#', 'desc': 'System reset'}, {'id': 'rtck', 'name': 'RTCK', 'desc': 'Return clock signal'}, ) annotations = tuple([tuple([s.lower(), s]) for s in jtag_states]) + ( \ ('bit-tdi', 'Bit (TDI)'), ('bit-tdo', 'Bit (TDO)'), ('bitstring-tdi', 'Bitstring (TDI)'), ('bitstring-tdo', 'Bitstring (TDO)'), ) annotation_rows = ( ('bits-tdi', 'Bits (TDI)', (16,)), ('bits-tdo', 'Bits (TDO)', (17,)), ('bitstrings-tdi', 'Bitstring (TDI)', (18,)), ('bitstrings-tdo', 'Bitstring (TDO)', (19,)), ('states', 'States', tuple(range(15 + 1))), ) def __init__(self): self.reset() def reset(self): # self.state = 'TEST-LOGIC-RESET' self.state = 'RUN-TEST/IDLE' self.oldstate = None self.bits_tdi = [] self.bits_tdo = [] self.bits_samplenums_tdi = [] self.bits_samplenums_tdo = [] self.ss_item = self.es_item = None self.ss_bitstring = self.es_bitstring = None self.saved_item = None self.first = True self.first_bit = True def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss_item, self.es_item, self.out_ann, data) def putp(self, data): self.put(self.ss_item, self.es_item, self.out_python, data) def putx_bs(self, data): self.put(self.ss_bitstring, self.es_bitstring, self.out_ann, data) def putp_bs(self, data): self.put(self.ss_bitstring, self.es_bitstring, self.out_python, data) def advance_state_machine(self, tms): self.oldstate = self.state # Intro "tree" if self.state == 'TEST-LOGIC-RESET': self.state = 'TEST-LOGIC-RESET' if (tms) else 'RUN-TEST/IDLE' elif self.state == 'RUN-TEST/IDLE': self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE' # DR "tree" elif self.state == 'SELECT-DR-SCAN': self.state = 'SELECT-IR-SCAN' if (tms) else 'CAPTURE-DR' elif self.state == 'CAPTURE-DR': self.state = 'EXIT1-DR' if (tms) else 'SHIFT-DR' elif self.state == 'SHIFT-DR': self.state = 'EXIT1-DR' if (tms) else 'SHIFT-DR' elif self.state == 'EXIT1-DR': self.state = 'UPDATE-DR' if (tms) else 'PAUSE-DR' elif self.state == 'PAUSE-DR': self.state = 'EXIT2-DR' if (tms) else 'PAUSE-DR' elif self.state == 'EXIT2-DR': self.state = 'UPDATE-DR' if (tms) else 'SHIFT-DR' elif self.state == 'UPDATE-DR': self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE' # IR "tree" elif self.state == 'SELECT-IR-SCAN': self.state = 'TEST-LOGIC-RESET' if (tms) else 'CAPTURE-IR' elif self.state == 'CAPTURE-IR': self.state = 'EXIT1-IR' if (tms) else 'SHIFT-IR' elif self.state == 'SHIFT-IR': self.state = 'EXIT1-IR' if (tms) else 'SHIFT-IR' elif self.state == 'EXIT1-IR': self.state = 'UPDATE-IR' if (tms) else 'PAUSE-IR' elif self.state == 'PAUSE-IR': self.state = 'EXIT2-IR' if (tms) else 'PAUSE-IR' elif self.state == 'EXIT2-IR': self.state = 'UPDATE-IR' if (tms) else 'SHIFT-IR' elif self.state == 'UPDATE-IR': self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE' def handle_rising_tck_edge(self, pins): (tdi, tdo, tck, tms, trst, srst, rtck) = pins # Rising TCK edges always advance the state machine. self.advance_state_machine(tms) if self.first: # Save the start sample and item for later (no output yet). self.ss_item = self.samplenum self.first = False else: # Output the saved item (from the last CLK edge to the current). self.es_item = self.samplenum # Output the old state (from last rising TCK edge to current one). self.putx([jtag_states.index(self.oldstate), [self.oldstate]]) self.putp(['NEW STATE', self.state]) # Upon SHIFT-*/EXIT1-* collect the current TDI/TDO values. if self.oldstate.startswith('SHIFT-') or \ self.oldstate.startswith('EXIT1-'): if self.first_bit: self.ss_bitstring = self.samplenum self.first_bit = False else: self.putx([16, [str(self.bits_tdi[0])]]) self.putx([17, [str(self.bits_tdo[0])]]) # Use self.samplenum as ES of the previous bit. self.bits_samplenums_tdi[0][1] = self.samplenum self.bits_samplenums_tdo[0][1] = self.samplenum self.bits_tdi.insert(0, tdi) self.bits_tdo.insert(0, tdo) # Use self.samplenum as SS of the current bit. self.bits_samplenums_tdi.insert(0, [self.samplenum, -1]) self.bits_samplenums_tdo.insert(0, [self.samplenum, -1]) # Output all TDI/TDO bits if we just switched to UPDATE-*. if self.state.startswith('UPDATE-'): self.es_bitstring = self.samplenum t = self.state[-2:] + ' TDI' b = ''.join(map(str, self.bits_tdi[1:])) h = ' (0x%x' % int('0b0' + b, 2) + ')' s = t + ': ' + b + h + ', ' + str(len(self.bits_tdi[1:])) + ' bits' self.putx_bs([18, [s]]) self.putp_bs([t, [b, self.bits_samplenums_tdi[1:]]]) self.bits_tdi = [] self.bits_samplenums_tdi = [] t = self.state[-2:] + ' TDO' b = ''.join(map(str, self.bits_tdo[1:])) h = ' (0x%x' % int('0b0' + b, 2) + ')' s = t + ': ' + b + h + ', ' + str(len(self.bits_tdo[1:])) + ' bits' self.putx_bs([19, [s]]) self.putp_bs([t, [b, self.bits_samplenums_tdo[1:]]]) self.bits_tdo = [] self.bits_samplenums_tdo = [] self.first_bit = True self.ss_bitstring = self.samplenum self.ss_item = self.samplenum def decode(self): while True: # Wait for a rising edge on TCK. self.handle_rising_tck_edge(self.wait({2: 'r'}))