## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2010-2016 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## # TODO: Look into arbitration, collision detection, clock synchronisation, etc. # TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0). # TODO: Implement support for detecting various bus errors. from common.srdhelper import bitpack_msb import sigrokdecode as srd ''' OUTPUT_PYTHON format: Packet: [, ] : - 'START' (START condition) - 'START REPEAT' (Repeated START condition) - 'ADDRESS READ' (Slave address, read) - 'ADDRESS WRITE' (Slave address, write) - 'DATA READ' (Data, read) - 'DATA WRITE' (Data, write) - 'STOP' (STOP condition) - 'ACK' (ACK bit) - 'NACK' (NACK bit) - 'BITS' (: list of data/address bits and their ss/es numbers) is the data or address byte associated with the 'ADDRESS*' and 'DATA*' command. Slave addresses do not include bit 0 (the READ/WRITE indication bit). For example, a slave address field could be 0x51 (instead of 0xa2). For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' is None. For 'BITS' is a sequence of tuples of bit values and their start and stop positions, in LSB first order (although the I2C protocol is MSB first). ''' # Meaning of table items: # command -> [annotation class, annotation text in order of decreasing length] proto = { 'START': [0, 'Start', 'S'], 'START REPEAT': [1, 'Start repeat', 'Sr'], 'STOP': [2, 'Stop', 'P'], 'ACK': [3, 'ACK', 'A'], 'NACK': [4, 'NACK', 'N'], 'BIT': [5, '{b:1d}'], 'ADDRESS READ': [6, 'Address read: {b:02X}', 'AR: {b:02X}', '{b:02X}'], 'ADDRESS WRITE': [7, 'Address write: {b:02X}', 'AW: {b:02X}', '{b:02X}'], 'DATA READ': [8, 'Data read: {b:02X}', 'DR: {b:02X}', '{b:02X}'], 'DATA WRITE': [9, 'Data write: {b:02X}', 'DW: {b:02X}', '{b:02X}'], } class Decoder(srd.Decoder): api_version = 3 id = 'i2c' name = 'I²C' longname = 'Inter-Integrated Circuit' desc = 'Two-wire, multi-master, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['i2c'] tags = ['Embedded/industrial'] channels = ( {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'}, {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'}, ) options = ( {'id': 'address_format', 'desc': 'Displayed slave address format', 'default': 'shifted', 'values': ('shifted', 'unshifted')}, ) annotations = ( ('start', 'Start condition'), ('repeat-start', 'Repeat start condition'), ('stop', 'Stop condition'), ('ack', 'ACK'), ('nack', 'NACK'), ('bit', 'Data/address bit'), ('address-read', 'Address read'), ('address-write', 'Address write'), ('data-read', 'Data read'), ('data-write', 'Data write'), ('warning', 'Warning'), ) annotation_rows = ( ('bits', 'Bits', (5,)), ('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)), ('warnings', 'Warnings', (10,)), ) binary = ( ('address-read', 'Address read'), ('address-write', 'Address write'), ('data-read', 'Data read'), ('data-write', 'Data write'), ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.is_write = None self.rem_addr_bytes = None self.is_repeat_start = False self.state = 'FIND START' self.pdu_start = None self.pdu_bits = 0 self.data_bits = [] def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_bitrate = self.register(srd.OUTPUT_META, meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit')) def putg(self, ss, es, cls, text): self.put(ss, es, self.out_ann, [cls, text]) def putp(self, ss, es, data): self.put(ss, es, self.out_python, data) def putb(self, ss, es, data): self.put(ss, es, self.out_binary, data) def handle_start(self, pins): ss, es = self.samplenum, self.samplenum if self.is_repeat_start: cmd = 'START REPEAT' else: cmd = 'START' self.pdu_start = self.samplenum self.pdu_bits = 0 self.putp(ss, es, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] self.putg(ss, es, cls, texts) self.state = 'FIND ADDRESS' self.is_repeat_start = True self.is_write = None self.rem_addr_bytes = None self.data_bits.clear() # Gather 8 bits of data plus the ACK/NACK bit. def handle_address_or_data(self, pins): scl, sda = pins self.pdu_bits += 1 # Accumulate a byte's bits, including its start position. # Accumulate individual bits and their start/end sample numbers # as we see them. Get the start sample number at the time when # the bit value gets sampled. Assume the start of the next bit # as the end sample number of the previous bit. Guess the last # bit's end sample number from the second last bit's width. # (gsi: Shouldn't falling SCL be the end of the bit value?) # Keep the bits in receive order (MSB first) during accumulation. if self.data_bits: self.data_bits[-1][2] = self.samplenum self.data_bits.append([sda, self.samplenum, self.samplenum]) if len(self.data_bits) < 8: return self.bitwidth = self.data_bits[-2][2] - self.data_bits[-3][2] self.data_bits[-1][2] += self.bitwidth # Get the byte value. Address and data are transmitted MSB-first. d = bitpack_msb(self.data_bits, 0) if self.state == 'FIND ADDRESS': # The READ/WRITE bit is only in the first address byte, not # in data bytes. Address bit pattern 0b1111_0xxx means that # this is a 10bit slave address, another byte follows. Get # the R/W direction and the address bytes count from the # first byte in the I2C transfer. addr_byte = d if self.rem_addr_bytes is None: if (addr_byte & 0xf8) == 0xf0: self.rem_addr_bytes = 2 self.slave_addr_7 = None self.slave_addr_10 = addr_byte & 0x06 self.slave_addr_10 <<= 7 else: self.rem_addr_bytes = 1 self.slave_addr_7 = addr_byte >> 1 self.slave_addr_10 = None has_rw_bit = self.is_write is None if self.is_write is None: read_bit = bool(addr_byte & 1) if self.options['address_format'] == 'shifted': d = d >> 1 self.is_write = False if read_bit else True else: self.slave_addr_10 |= addr_byte bin_class = -1 if self.state == 'FIND ADDRESS' and self.is_write: cmd = 'ADDRESS WRITE' bin_class = 1 elif self.state == 'FIND ADDRESS' and not self.is_write: cmd = 'ADDRESS READ' bin_class = 0 elif self.state == 'FIND DATA' and self.is_write: cmd = 'DATA WRITE' bin_class = 3 elif self.state == 'FIND DATA' and not self.is_write: cmd = 'DATA READ' bin_class = 2 ss_byte, es_byte = self.data_bits[0][1], self.data_bits[-1][2] # Reverse the list of bits to LSB first order before emitting # annotations and passing bits to upper layers. This may be # unexpected because the protocol is MSB first, but it keeps # backwards compatibility. lsb_bits = self.data_bits[:] lsb_bits.reverse() self.putp(ss_byte, es_byte, ['BITS', lsb_bits]) self.putp(ss_byte, es_byte, [cmd, d]) self.putb(ss_byte, es_byte, [bin_class, bytes([d])]) for bit_value, ss_bit, es_bit in lsb_bits: cls, texts = proto['BIT'][0], proto['BIT'][1:] texts = [t.format(b = bit_value) for t in texts] self.putg(ss_bit, es_bit, cls, texts) if cmd.startswith('ADDRESS') and has_rw_bit: # Assign the last bit's location to the R/W annotation. # Adjust the address value's location to the left. ss_bit, es_bit = self.data_bits[-1][1], self.data_bits[-1][2] es_byte = self.data_bits[-2][2] cls = proto[cmd][0] w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R'] self.putg(ss_bit, es_bit, cls, w) cls, texts = proto[cmd][0], proto[cmd][1:] texts = [t.format(b = d) for t in texts] self.putg(ss_byte, es_byte, cls, texts) # Done with this packet. self.data_bits.clear() self.state = 'FIND ACK' def get_ack(self, pins): scl, sda = pins # NOTE! Re-uses the last data bit's width for ACK/NAK as well. # Which might be acceptable because this decoder implementation # only gets to handle ACK/NAK after all DATA BITS were seen. ss_bit, es_bit = self.samplenum, self.samplenum + self.bitwidth cmd = 'NACK' if (sda == 1) else 'ACK' self.putp(ss_bit, es_bit, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] self.putg(ss_bit, es_bit, cls, texts) # Slave addresses can span one or two bytes, before data bytes # follow. There can be an arbitrary number of data bytes. Stick # with getting more address bytes if applicable, or enter or # remain in the data phase of the transfer otherwise. if self.rem_addr_bytes: self.rem_addr_bytes -= 1 if self.rem_addr_bytes: self.state = 'FIND ADDRESS' else: self.state = 'FIND DATA' def handle_stop(self, pins): # Meta bitrate if self.samplerate and self.pdu_start: elapsed = self.samplenum - self.pdu_start + 1 elapsed /= self.samplerate bitrate = int(1 / elapsed * self.pdu_bits) ss_meta, es_meta = self.pdu_start, self.samplenum self.put(ss_meta, es_meta, self.out_bitrate, bitrate) self.pdu_start = None self.pdu_bits = 0 cmd = 'STOP' ss, es = self.samplenum, self.samplenum self.putp(ss, es, [cmd, None]) cls, texts = proto[cmd][0], proto[cmd][1:] self.putg(ss, es, cls, texts) self.state = 'FIND START' self.is_repeat_start = False self.is_write = None self.data_bits.clear() def decode(self): while True: # State machine. if self.state == 'FIND START': # Wait for a START condition (S): SCL = high, SDA = falling. self.handle_start(self.wait({0: 'h', 1: 'f'})) elif self.state == 'FIND ADDRESS': # Wait for a data bit: SCL = rising. self.handle_address_or_data(self.wait({0: 'r'})) elif self.state == 'FIND DATA': # Wait for any of the following conditions (or combinations): # a) Data sampling of receiver: SCL = rising, and/or # b) START condition (S): SCL = high, SDA = falling, and/or # c) STOP condition (P): SCL = high, SDA = rising pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}]) # Check which of the condition(s) matched and handle them. if self.matched[0]: self.handle_address_or_data(pins) elif self.matched[1]: self.handle_start(pins) elif self.matched[2]: self.handle_stop(pins) elif self.state == 'FIND ACK': # Wait for a data/ack bit: SCL = rising. self.get_ack(self.wait({0: 'r'}))