## ## This file is part of the sigrok project. ## ## Copyright (C) 2010-2011 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # I2C protocol decoder # TODO: Look into arbitration, collision detection, clock synchronisation, etc. # TODO: Handle clock stretching. # TODO: Handle combined messages / repeated START. # TODO: Implement support for 7bit and 10bit slave addresses. # TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0). # TODO: Implement support for detecting various bus errors. # TODO: I2C address of slaves. # TODO: Handle multiple different I2C devices on same bus # -> we need to decode multiple protocols at the same time. import sigrokdecode as srd # Annotation feed formats ANN_SHIFTED = 0 ANN_SHIFTED_SHORT = 1 ANN_RAW = 2 # Values are verbose and short annotation, respectively. proto = { 'START': ['START', 'S'], 'START REPEAT': ['START REPEAT', 'Sr'], 'STOP': ['STOP', 'P'], 'ACK': ['ACK', 'A'], 'NACK': ['NACK', 'N'], 'ADDRESS READ': ['ADDRESS READ', 'AR'], 'ADDRESS WRITE': ['ADDRESS WRITE', 'AW'], 'DATA READ': ['DATA READ', 'DR'], 'DATA WRITE': ['DATA WRITE', 'DW'], } class Decoder(srd.Decoder): api_version = 1 id = 'i2c' name = 'I2C' longname = 'Inter-Integrated Circuit' desc = 'Two-wire, multi-master, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['i2c'] probes = [ {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'}, {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'}, ] optional_probes = [] options = { 'addressing': ['Slave addressing (in bits)', 7], # 7 or 10 } annotations = [ # ANN_SHIFTED ['7-bit shifted hex', 'Read/write bit shifted out from the 8-bit I2C slave address'], # ANN_SHIFTED_SHORT ['7-bit shifted hex (short)', 'Read/write bit shifted out from the 8-bit I2C slave address'], # ANN_RAW ['Raw hex', 'Unaltered raw data'], ] def __init__(self, **kwargs): self.startsample = -1 self.samplenum = None self.bitcount = 0 self.databyte = 0 self.wr = -1 self.is_repeat_start = 0 self.state = 'FIND START' self.oldscl = None self.oldsda = None self.oldpins = None def start(self, metadata): self.out_proto = self.add(srd.OUTPUT_PROTO, 'i2c') self.out_ann = self.add(srd.OUTPUT_ANN, 'i2c') def report(self): pass def is_start_condition(self, scl, sda): # START condition (S): SDA = falling, SCL = high if (self.oldsda == 1 and sda == 0) and scl == 1: return True return False def is_data_bit(self, scl, sda): # Data sampling of receiver: SCL = rising if self.oldscl == 0 and scl == 1: return True return False def is_stop_condition(self, scl, sda): # STOP condition (P): SDA = rising, SCL = high if (self.oldsda == 0 and sda == 1) and scl == 1: return True return False def found_start(self, scl, sda): self.startsample = self.samplenum cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START' self.put(self.out_proto, [cmd, None]) self.put(self.out_ann, [ANN_SHIFTED, [proto[cmd][0]]]) self.put(self.out_ann, [ANN_SHIFTED_SHORT, [proto[cmd][1]]]) self.state = 'FIND ADDRESS' self.bitcount = self.databyte = 0 self.is_repeat_start = 1 self.wr = -1 # Gather 8 bits of data plus the ACK/NACK bit. def found_address_or_data(self, scl, sda): # Address and data are transmitted MSB-first. self.databyte <<= 1 self.databyte |= sda if self.bitcount == 0: self.startsample = self.samplenum # Return if we haven't collected all 8 + 1 bits, yet. self.bitcount += 1 if self.bitcount != 8: return # We triggered on the ACK/NACK bit, but won't report that until later. self.startsample -= 1 # Send raw output annotation before we start shifting out # read/write and ACK/NACK bits. self.put(self.out_ann, [ANN_RAW, ['0x%.2x' % self.databyte]]) if self.state == 'FIND ADDRESS': # The READ/WRITE bit is only in address bytes, not data bytes. self.wr = 0 if (self.databyte & 1) else 1 d = self.databyte >> 1 elif self.state == 'FIND DATA': d = self.databyte if self.state == 'FIND ADDRESS' and self.wr == 1: cmd = 'ADDRESS WRITE' elif self.state == 'FIND ADDRESS' and self.wr == 0: cmd = 'ADDRESS READ' elif self.state == 'FIND DATA' and self.wr == 1: cmd = 'DATA WRITE' elif self.state == 'FIND DATA' and self.wr == 0: cmd = 'DATA READ' self.put(self.out_proto, [cmd, d]) self.put(self.out_ann, [ANN_SHIFTED, [proto[cmd][0], '0x%02x' % d]]) self.put(self.out_ann, [ANN_SHIFTED_SHORT, [proto[cmd][1], '0x%02x' % d]]) # Done with this packet. self.startsample = -1 self.bitcount = self.databyte = 0 self.state = 'FIND ACK' def get_ack(self, scl, sda): self.startsample = self.samplenum ack_bit = 'NACK' if (sda == 1) else 'ACK' self.put(self.out_proto, [ack_bit, None]) self.put(self.out_ann, [ANN_SHIFTED, [proto[ack_bit][0]]]) self.put(self.out_ann, [ANN_SHIFTED_SHORT, [proto[ack_bit][1]]]) # There could be multiple data bytes in a row, so either find # another data byte or a STOP condition next. self.state = 'FIND DATA' def found_stop(self, scl, sda): self.startsample = self.samplenum self.put(self.out_proto, ['STOP', None]) self.put(self.out_ann, [ANN_SHIFTED, [proto['STOP'][0]]]) self.put(self.out_ann, [ANN_SHIFTED_SHORT, [proto['STOP'][1]]]) self.state = 'FIND START' self.is_repeat_start = 0 self.wr = -1 def put(self, output_id, data): # Inject sample range into the call up to sigrok. super(Decoder, self).put(self.startsample, self.samplenum, output_id, data) def decode(self, ss, es, data): for (self.samplenum, pins) in data: # Ignore identical samples early on (for performance reasons). if self.oldpins == pins: continue self.oldpins, (scl, sda) = pins, pins # First sample: Save SCL/SDA value. if self.oldscl == None: self.oldscl = scl self.oldsda = sda continue # TODO: Wait until the bus is idle (SDA = SCL = 1) first? # State machine. if self.state == 'FIND START': if self.is_start_condition(scl, sda): self.found_start(scl, sda) elif self.state == 'FIND ADDRESS': if self.is_data_bit(scl, sda): self.found_address_or_data(scl, sda) elif self.state == 'FIND DATA': if self.is_data_bit(scl, sda): self.found_address_or_data(scl, sda) elif self.is_start_condition(scl, sda): self.found_start(scl, sda) elif self.is_stop_condition(scl, sda): self.found_stop(scl, sda) elif self.state == 'FIND ACK': if self.is_data_bit(scl, sda): self.get_ack(scl, sda) else: raise Exception('Invalid state %d' % self.STATE) # Save current SDA/SCL values for the next round. self.oldscl = scl self.oldsda = sda