## ## This file is part of the sigrok project. ## ## Copyright (C) 2010-2011 Uwe Hermann <uwe@hermann-uwe.de> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## # # I2C protocol decoder # # # The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master # bus using two signals (SCL = serial clock line, SDA = serial data line). # # There can be many devices on the same bus. Each device can potentially be # master or slave (and that can change during runtime). Both slave and master # can potentially play the transmitter or receiver role (this can also # change at runtime). # # Possible maximum data rates: # - Standard mode: 100 kbit/s # - Fast mode: 400 kbit/s # - Fast-mode Plus: 1 Mbit/s # - High-speed mode: 3.4 Mbit/s # # START condition (S): SDA = falling, SCL = high # Repeated START condition (Sr): same as S # Data bit sampling: SCL = rising # STOP condition (P): SDA = rising, SCL = high # # All data bytes on SDA are exactly 8 bits long (transmitted MSB-first). # Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low, # that indicates an ACK, if it's high that indicates a NACK. # # After the first START condition, a master sends the device address of the # slave it wants to talk to. Slave addresses are 7 bits long (MSB-first). # After those 7 bits, a data direction bit is sent. If the bit is low that # indicates a WRITE operation, if it's high that indicates a READ operation. # # Later an optional 10bit slave addressing scheme was added. # # Documentation: # http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec) # http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec) # http://en.wikipedia.org/wiki/I2C # # TODO: Look into arbitration, collision detection, clock synchronisation, etc. # TODO: Handle clock stretching. # TODO: Handle combined messages / repeated START. # TODO: Implement support for 7bit and 10bit slave addresses. # TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0). # TODO: Implement support for detecting various bus errors. # # I2C output format: # # The output consists of a (Python) list of I2C "packets", each of which # has an (implicit) index number (its index in the list). # Each packet consists of a Python dict with certain key/value pairs. # # TODO: Make this a list later instead of a dict? # # 'type': (string) # - 'S' (START condition) # - 'Sr' (Repeated START) # - 'AR' (Address, read) # - 'AW' (Address, write) # - 'DR' (Data, read) # - 'DW' (Data, write) # - 'P' (STOP condition) # 'range': (tuple of 2 integers, the min/max samplenumber of this range) # - (min, max) # - min/max can also be identical. # 'data': (actual data as integer ???) TODO: This can be very variable... # 'ann': (string; additional annotations / comments) # # Example output: # [{'type': 'S', 'range': (150, 160), 'data': None, 'ann': 'Foobar'}, # {'type': 'AW', 'range': (200, 300), 'data': 0x50, 'ann': 'Slave 4'}, # {'type': 'DW', 'range': (310, 370), 'data': 0x00, 'ann': 'Init cmd'}, # {'type': 'AR', 'range': (500, 560), 'data': 0x50, 'ann': 'Get stat'}, # {'type': 'DR', 'range': (580, 640), 'data': 0xfe, 'ann': 'OK'}, # {'type': 'P', 'range': (650, 660), 'data': None, 'ann': None}] # # Possible other events: # - Error event in case protocol looks broken: # [{'type': 'ERROR', 'range': (min, max), # 'data': TODO, 'ann': 'This is not a Microchip 24XX64 EEPROM'}, # [{'type': 'ERROR', 'range': (min, max), # 'data': TODO, 'ann': 'TODO'}, # - TODO: Make list of possible errors accessible as metadata? # # TODO: I2C address of slaves. # TODO: Handle multiple different I2C devices on same bus # -> we need to decode multiple protocols at the same time. # TODO: range: Always contiguous? Splitted ranges? Multiple per event? # # # I2C input format: # # signals: # [[id, channel, description], ...] # TODO # # Example: # {'id': 'SCL', 'ch': 5, 'desc': 'Serial clock line'} # {'id': 'SDA', 'ch': 7, 'desc': 'Serial data line'} # ... # # {'inbuf': [...], # 'signals': [{'SCL': }]} # class Sample(): def __init__(self, data): self.data = data def probe(self, probe): s = ord(self.data[probe / 8]) & (1 << (probe % 8)) return True if s else False def sampleiter(data, unitsize): for i in range(0, len(data), unitsize): yield(Sample(data[i:i+unitsize])) class Decoder(): name = 'I2C' longname = 'Inter-Integrated Circuit (I2C) bus' desc = 'I2C is a two-wire, multi-master, serial bus.' longdesc = '...' author = 'Uwe Hermann' email = 'uwe@hermann-uwe.de' license = 'gplv2+' inputs = ['logic'] outputs = ['i2c'] probes = { 'scl': {'ch': 0, 'name': 'SCL', 'desc': 'Serial clock line'}, 'sda': {'ch': 1, 'name': 'SDA', 'desc': 'Serial data line'}, } options = { 'address-space': ['Address space (in bits)', 7], } def __init__(self, **kwargs): self.probes = Decoder.probes.copy() # TODO: Don't hardcode the number of channels. self.channels = 8 self.samplenum = 0 self.bitcount = 0 self.databyte = 0 self.wr = -1 self.startsample = -1 self.is_repeat_start = 0 self.FIND_START, self.FIND_ADDRESS, self.FIND_DATA = range(3) self.state = self.FIND_START # Get the channel/probe number of the SCL/SDA signals. self.scl_bit = self.probes['scl']['ch'] self.sda_bit = self.probes['sda']['ch'] self.oldscl = None self.oldsda = None def start(self, metadata): self.unitsize = metadata["unitsize"] def report(self): pass def is_start_condition(self, scl, sda): """START condition (S): SDA = falling, SCL = high""" if (self.oldsda == 1 and sda == 0) and scl == 1: return True return False def is_data_bit(self, scl, sda): """Data sampling of receiver: SCL = rising""" if self.oldscl == 0 and scl == 1: return True return False def is_stop_condition(self, scl, sda): """STOP condition (P): SDA = rising, SCL = high""" if (self.oldsda == 0 and sda == 1) and scl == 1: return True return False def find_start(self, scl, sda): out = [] # o = {'type': 'S', 'range': (self.samplenum, self.samplenum), # 'data': None, 'ann': None}, o = (self.is_repeat_start == 1) and 'Sr' or 'S' out.append(o) self.state = self.FIND_ADDRESS self.bitcount = self.databyte = 0 self.is_repeat_start = 1 self.wr = -1 return out def find_address_or_data(self, scl, sda): """Gather 8 bits of data plus the ACK/NACK bit.""" out = o = [] if self.startsample == -1: self.startsample = self.samplenum self.bitcount += 1 # Address and data are transmitted MSB-first. self.databyte <<= 1 self.databyte |= sda # Return if we haven't collected all 8 + 1 bits, yet. if self.bitcount != 9: return [] # We received 8 address/data bits and the ACK/NACK bit. self.databyte >>= 1 # Shift out unwanted ACK/NACK bit here. ack = (sda == 1) and 'N' or 'A' if self.state == self.FIND_ADDRESS: d = self.databyte & 0xfe # The READ/WRITE bit is only in address bytes, not data bytes. self.wr = (self.databyte & 1) and 1 or 0 elif self.state == self.FIND_DATA: d = self.databyte else: # TODO: Error? pass # o = {'type': self.state, # 'range': (self.startsample, self.samplenum - 1), # 'data': d, 'ann': None} o = {'data': "0x%02x" % d} # TODO: Simplify. if self.state == self.FIND_ADDRESS and self.wr == 1: o['type'] = 'AW' elif self.state == self.FIND_ADDRESS and self.wr == 0: o['type'] = 'AR' elif self.state == self.FIND_DATA and self.wr == 1: o['type'] = 'DW' elif self.state == self.FIND_DATA and self.wr == 0: o['type'] = 'DR' out.append(o) # o = {'type': ack, 'range': (self.samplenum, self.samplenum), # 'data': None, 'ann': None} o = ack out.append(o) self.bitcount = self.databyte = 0 self.startsample = -1 if self.state == self.FIND_ADDRESS: self.state = self.FIND_DATA elif self.state == self.FIND_DATA: # There could be multiple data bytes in a row. # So, either find a STOP condition or another data byte next. pass return out def find_stop(self, scl, sda): out = o = [] # o = {'type': 'P', 'range': (self.samplenum, self.samplenum), # 'data': None, 'ann': None}, o = 'P' out.append(o) self.state = self.FIND_START self.is_repeat_start = 0 self.wr = -1 return out def decode(self, data): """I2C protocol decoder""" out = [] o = ack = d = '' # We should accept a list of samples and iterate... for sample in sampleiter(data["data"], self.unitsize): # TODO: Eliminate the need for ord(). s = ord(sample.data) # TODO: Start counting at 0 or 1? self.samplenum += 1 # First sample: Save SCL/SDA value. if self.oldscl == None: # Get SCL/SDA bit values (0/1 for low/high) of the first sample. self.oldscl = (s & (1 << self.scl_bit)) >> self.scl_bit self.oldsda = (s & (1 << self.sda_bit)) >> self.sda_bit continue # Get SCL/SDA bit values (0/1 for low/high). scl = (s & (1 << self.scl_bit)) >> self.scl_bit sda = (s & (1 << self.sda_bit)) >> self.sda_bit # TODO: Wait until the bus is idle (SDA = SCL = 1) first? # State machine. if self.state == self.FIND_START: if self.is_start_condition(scl, sda): out += self.find_start(scl, sda) elif self.state == self.FIND_ADDRESS: if self.is_data_bit(scl, sda): out += self.find_address_or_data(scl, sda) elif self.state == self.FIND_DATA: if self.is_data_bit(scl, sda): out += self.find_address_or_data(scl, sda) elif self.is_start_condition(scl, sda): out += self.find_start(scl, sda) elif self.is_stop_condition(scl, sda): out += self.find_stop(scl, sda) else: # TODO: Error? pass # Save current SDA/SCL values for the next round. self.oldscl = scl self.oldsda = sda if out != []: sigrok.put(out) # Use psyco (if available) as it results in huge performance improvements. try: import psyco psyco.bind(decode) except ImportError: pass import sigrok