## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012 Bert Vermeulen ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## # TODO: # - EDID < 1.3 # - add short annotations # - Signal level standard field in basic display parameters block # - Additional color point descriptors # - Additional standard timing descriptors # - Extensions import sigrokdecode as srd import os EDID_HEADER = [0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00] OFF_VENDOR = 8 OFF_VERSION = 18 OFF_BASIC = 20 OFF_CHROM = 25 OFF_EST_TIMING = 35 OFF_STD_TIMING = 38 OFF_DET_TIMING = 54 OFF_NUM_EXT = 126 OFF_CHECKSUM = 127 # Pre-EDID established timing modes est_modes = [ '720x400@70Hz', '720x400@88Hz', '640x480@60Hz', '640x480@67Hz', '640x480@72Hz', '640x480@75Hz', '800x600@56Hz', '800x600@60Hz', '800x600@72Hz', '800x600@75Hz', '832x624@75Hz', '1024x768@87Hz(i)', '1024x768@60Hz', '1024x768@70Hz', '1024x768@75Hz', '1280x1024@75Hz', '1152x870@75Hz', ] # X:Y display aspect ratios, as used in standard timing modes xy_ratio = [ (16, 10), (4, 3), (5, 4), (16, 9), ] # Annotation classes ANN_FIELDS = 0 ANN_SECTIONS = 1 class Decoder(srd.Decoder): api_version = 2 id = 'edid' name = 'EDID' longname = 'Extended Display Identification Data' desc = 'Data structure describing display device capabilities.' license = 'gplv3+' inputs = ['i2c'] outputs = ['edid'] annotations = ( ('fields', 'EDID structure fields'), ('sections', 'EDID structure sections'), ) annotation_rows = ( ('sections', 'Sections', (1,)), ('fields', 'Fields', (0,)), ) def __init__(self, **kwargs): self.state = None # Received data items, used as an index into samplenum/data self.cnt = 0 # Start/end sample numbers per data item self.sn = [] # Received data self.cache = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def decode(self, ss, es, data): cmd, data = data # We only care about actual data bytes that are read (for now). if cmd != 'DATA READ': return self.cnt += 1 self.sn.append([ss, es]) self.cache.append(data) # debug if self.state is None: # Wait for the EDID header if self.cnt >= OFF_VENDOR: if self.cache[-8:] == EDID_HEADER: # Throw away any garbage before the header self.sn = self.sn[-8:] self.cache = self.cache[-8:] self.cnt = 8 self.state = 'edid' self.put(self.sn[0][0], es, self.out_ann, [ANN_SECTIONS, ['Header']]) self.put(self.sn[0][0], es, self.out_ann, [ANN_FIELDS, ['Header pattern']]) elif self.state == 'edid': if self.cnt == OFF_VERSION: self.decode_vid(-10) self.decode_pid(-8) self.decode_serial(-6) self.decode_mfrdate(-2) self.put(self.sn[OFF_VENDOR][0], es, self.out_ann, [ANN_SECTIONS, ['Vendor/product']]) elif self.cnt == OFF_BASIC: self.put(self.sn[OFF_VERSION][0], es, self.out_ann, [ANN_SECTIONS, ['EDID Version']]) self.put(self.sn[OFF_VERSION][0], self.sn[OFF_VERSION][1], self.out_ann, [ANN_FIELDS, ['Version %d' % self.cache[-2]]]) self.put(self.sn[OFF_VERSION+1][0], self.sn[OFF_VERSION+1][1], self.out_ann, [ANN_FIELDS, ['Revision %d' % self.cache[-1]]]) elif self.cnt == OFF_CHROM: self.put(self.sn[OFF_BASIC][0], es, self.out_ann, [ANN_SECTIONS, ['Basic display']]) self.decode_basicdisplay(-5) elif self.cnt == OFF_EST_TIMING: self.put(self.sn[OFF_CHROM][0], es, self.out_ann, [ANN_SECTIONS, ['Color characteristics']]) self.decode_chromaticity(-10) elif self.cnt == OFF_STD_TIMING: self.put(self.sn[OFF_EST_TIMING][0], es, self.out_ann, [ANN_SECTIONS, ['Established timings']]) self.decode_est_timing(-3) elif self.cnt == OFF_DET_TIMING: self.put(self.sn[OFF_STD_TIMING][0], es, self.out_ann, [ANN_SECTIONS, ['Standard timings']]) self.decode_std_timing(self.cnt - 16) elif self.cnt == OFF_NUM_EXT: self.decode_descriptors(-72) elif self.cnt == OFF_CHECKSUM: self.put(ss, es, self.out_ann, [0, ['Extensions present: %d' % self.cache[self.cnt-1]]]) elif self.cnt == OFF_CHECKSUM+1: checksum = 0 for i in range(128): checksum += self.cache[i] if checksum % 256 == 0: csstr = 'OK' else: csstr = 'WRONG!' self.put(ss, es, self.out_ann, [0, ['Checksum: %d (%s)' % ( self.cache[self.cnt-1], csstr)]]) self.state = 'extensions' elif self.state == 'extensions': pass def ann_field(self, start, end, annotation): self.put(self.sn[start][0], self.sn[end][1], self.out_ann, [ANN_FIELDS, [annotation]]) def lookup_pnpid(self, pnpid): pnpid_file = os.path.join(os.path.dirname(__file__), 'pnpids.txt') if os.path.exists(pnpid_file): for line in open(pnpid_file).readlines(): if line.find(pnpid + ';') == 0: return line[4:].strip() return '' def decode_vid(self, offset): pnpid = chr(64 + ((self.cache[offset] & 0x7c) >> 2)) pnpid += chr(64 + (((self.cache[offset] & 0x03) << 3) | ((self.cache[offset+1] & 0xe0) >> 5))) pnpid += chr(64 + (self.cache[offset+1] & 0x1f)) vendor = self.lookup_pnpid(pnpid) if vendor: pnpid += ' (%s)' % vendor self.ann_field(offset, offset+1, pnpid) def decode_pid(self, offset): pidstr = 'Product 0x%.2x%.2x' % (self.cache[offset+1], self.cache[offset]) self.ann_field(offset, offset+1, pidstr) def decode_serial(self, offset): serialnum = (self.cache[offset+3] << 24) \ + (self.cache[offset+2] << 16) \ + (self.cache[offset+1] << 8) \ + self.cache[offset] serialstr = '' is_alnum = True for i in range(4): if not chr(self.cache[offset+3-i]).isalnum(): is_alnum = False break serialstr += chr(self.cache[offset+3-i]) serial = serialstr if is_alnum else str(serialnum) self.ann_field(offset, offset+3, 'Serial ' + serial) def decode_mfrdate(self, offset): datestr = '' if self.cache[offset]: datestr += 'week %d, ' % self.cache[offset] datestr += str(1990 + self.cache[offset+1]) if datestr: self.ann_field(offset, offset+1, 'Manufactured ' + datestr) def decode_basicdisplay(self, offset): # Video input definition vid = self.cache[offset] if vid & 0x80: # Digital self.ann_field(offset, offset, 'Video input: VESA DFP 1.') else: # Analog sls = (vid & 60) >> 5 self.ann_field(offset, offset, 'Signal level standard: %.2x' % sls) if vid & 0x10: self.ann_field(offset, offset, 'Blank-to-black setup expected') syncs = '' if vid & 0x08: syncs += 'separate syncs, ' if vid & 0x04: syncs += 'composite syncs, ' if vid & 0x02: syncs += 'sync on green, ' if vid & 0x01: syncs += 'Vsync serration required, ' if syncs: self.ann_field(offset, offset, 'Supported syncs: %s' % syncs[:-2]) # Max horizontal/vertical image size if self.cache[offset+1] != 0 and self.cache[offset+2] != 0: # Projectors have this set to 0 sizestr = '%dx%dcm' % (self.cache[offset+1], self.cache[offset+2]) self.ann_field(offset+1, offset+2, 'Physical size: ' + sizestr) # Display transfer characteristic (gamma) if self.cache[offset+3] != 0xff: gamma = (self.cache[offset+3] + 100) / 100 self.ann_field(offset+3, offset+3, 'Gamma: %1.2f' % gamma) # Feature support fs = self.cache[offset+4] dpms = '' if fs & 0x80: dpms += 'standby, ' if fs & 0x40: dpms += 'suspend, ' if fs & 0x20: dpms += 'active off, ' if dpms: self.ann_field(offset+4, offset+4, 'DPMS support: %s' % dpms[:-2]) dt = (fs & 0x18) >> 3 dtstr = '' if dt == 0: dtstr = 'Monochrome' elif dt == 1: dtstr = 'RGB color' elif dt == 2: dtstr = 'non-RGB multicolor' if dtstr: self.ann_field(offset+4, offset+4, 'Display type: %s' % dtstr) if fs & 0x04: self.ann_field(offset+4, offset+4, 'Color space: standard sRGB') # Save this for when we decode the first detailed timing descriptor self.have_preferred_timing = (fs & 0x02) == 0x02 if fs & 0x01: gft = '' else: gft = 'not ' self.ann_field(offset+4, offset+4, 'Generalized timing formula: %ssupported' % gft) def convert_color(self, value): # Convert from 10-bit packet format to float outval = 0.0 for i in range(10): if value & 0x01: outval += 2 ** -(10-i) value >>= 1 return outval def decode_chromaticity(self, offset): redx = (self.cache[offset+2] << 2) + ((self.cache[offset] & 0xc0) >> 6) redy = (self.cache[offset+3] << 2) + ((self.cache[offset] & 0x30) >> 4) self.ann_field(offset, offset+9, 'Chromacity red: X %1.3f, Y %1.3f' % ( self.convert_color(redx), self.convert_color(redy))) greenx = (self.cache[offset+4] << 2) + ((self.cache[offset] & 0x0c) >> 6) greeny = (self.cache[offset+5] << 2) + ((self.cache[offset] & 0x03) >> 4) self.ann_field(offset, offset+9, 'Chromacity green: X %1.3f, Y %1.3f' % ( self.convert_color(greenx), self.convert_color(greeny))) bluex = (self.cache[offset+6] << 2) + ((self.cache[offset+1] & 0xc0) >> 6) bluey = (self.cache[offset+7] << 2) + ((self.cache[offset+1] & 0x30) >> 4) self.ann_field(offset, offset+9, 'Chromacity blue: X %1.3f, Y %1.3f' % ( self.convert_color(bluex), self.convert_color(bluey))) whitex = (self.cache[offset+8] << 2) + ((self.cache[offset+1] & 0x0c) >> 6) whitey = (self.cache[offset+9] << 2) + ((self.cache[offset+1] & 0x03) >> 4) self.ann_field(offset, offset+9, 'Chromacity white: X %1.3f, Y %1.3f' % ( self.convert_color(whitex), self.convert_color(whitey))) def decode_est_timing(self, offset): # Pre-EDID modes bitmap = (self.cache[offset] << 9) \ + (self.cache[offset+1] << 1) \ + ((self.cache[offset+2] & 0x80) >> 7) modestr = '' for i in range(17): if bitmap & (1 << (16-i)): modestr += est_modes[i] + ', ' if modestr: self.ann_field(offset, offset+2, 'Supported established modes: %s' % modestr[:-2]) def decode_std_timing(self, offset): modestr = '' for i in range(0, 16, 2): if self.cache[offset+i] == 0x01 and self.cache[offset+i+1] == 0x01: # Unused field continue x = (self.cache[offset+i] + 31) * 8 ratio = (self.cache[offset+i+1] & 0xc0) >> 6 ratio_x, ratio_y = xy_ratio[ratio] y = x / ratio_x * ratio_y refresh = (self.cache[offset+i+1] & 0x3f) + 60 modestr += '%dx%d@%dHz, ' % (x, y, refresh) if modestr: self.ann_field(offset, offset + 15, 'Supported standard modes: %s' % modestr[:-2]) def decode_detailed_timing(self, offset): if offset == -72 and self.have_preferred_timing: # Only on first detailed timing descriptor section = 'Preferred' else: section = 'Detailed' section += ' timing descriptor' self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, [section]]) pixclock = float((self.cache[offset+1] << 8) + self.cache[offset]) / 100 self.ann_field(offset, offset+1, 'Pixel clock: %.2f MHz' % pixclock) horiz_active = ((self.cache[offset+4] & 0xf0) << 4) + self.cache[offset+2] self.ann_field(offset+2, offset+4, 'Horizontal active: %d' % horiz_active) horiz_blank = ((self.cache[offset+4] & 0x0f) << 8) + self.cache[offset+3] self.ann_field(offset+2, offset+4, 'Horizontal blanking: %d' % horiz_blank) vert_active = ((self.cache[offset+7] & 0xf0) << 4) + self.cache[offset+5] self.ann_field(offset+5, offset+7, 'Vertical active: %d' % vert_active) vert_blank = ((self.cache[offset+7] & 0x0f) << 8) + self.cache[offset+6] self.ann_field(offset+5, offset+7, 'Vertical blanking: %d' % vert_blank) horiz_sync_off = ((self.cache[offset+11] & 0xc0) << 2) + self.cache[offset+8] self.ann_field(offset+8, offset+11, 'Horizontal sync offset: %d' % horiz_sync_off) horiz_sync_pw = ((self.cache[offset+11] & 0x30) << 4) + self.cache[offset+9] self.ann_field(offset+8, offset+11, 'Horizontal sync pulse width: %d' % horiz_sync_pw) vert_sync_off = ((self.cache[offset+11] & 0x0c) << 2) \ + ((self.cache[offset+10] & 0xf0) >> 4) self.ann_field(offset+8, offset+11, 'Vertical sync offset: %d' % vert_sync_off) vert_sync_pw = ((self.cache[offset+11] & 0x03) << 4) \ + (self.cache[offset+10] & 0x0f) self.ann_field(offset+8, offset+11, 'Vertical sync pulse width: %d' % vert_sync_pw) horiz_size = ((self.cache[offset+14] & 0xf0) << 4) + self.cache[offset+12] vert_size = ((self.cache[offset+14] & 0x0f) << 8) + self.cache[offset+13] self.ann_field(offset+12, offset+14, 'Physical size: %dx%dmm' % (horiz_size, vert_size)) horiz_border = self.cache[offset+15] self.ann_field(offset+15, offset+15, 'Horizontal border: %d pixels' % horiz_border) vert_border = self.cache[offset+16] self.ann_field(offset+16, offset+16, 'Vertical border: %d lines' % vert_border) features = 'Flags: ' if self.cache[offset+17] & 0x80: features += 'interlaced, ' stereo = (self.cache[offset+17] & 0x60) >> 5 if stereo: if self.cache[offset+17] & 0x01: features += '2-way interleaved stereo (' features += ['right image on even lines', 'left image on even lines', 'side-by-side'][stereo-1] features += '), ' else: features += 'field sequential stereo (' features += ['right image on sync=1', 'left image on sync=1', '4-way interleaved'][stereo-1] features += '), ' sync = (self.cache[offset+17] & 0x18) >> 3 sync2 = (self.cache[offset+17] & 0x06) >> 1 posneg = ['negative', 'positive'] features += 'sync type ' if sync == 0x00: features += 'analog composite (serrate on RGB)' elif sync == 0x01: features += 'bipolar analog composite (serrate on RGB)' elif sync == 0x02: features += 'digital composite (serrate on composite polarity ' \ + (posneg[sync2 & 0x01]) + ')' elif sync == 0x03: features += 'digital separate (' features += 'Vsync polarity ' + (posneg[(sync2 & 0x02) >> 1]) features += ', Hsync polarity ' + (posneg[sync2 & 0x01]) features += ')' features += ', ' self.ann_field(offset+17, offset+17, features[:-2]) def decode_descriptor(self, offset): tag = self.cache[offset+3] if tag == 0xff: # Monitor serial number self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Serial number']]) text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace') self.ann_field(offset, offset+17, text.strip()) elif tag == 0xfe: # Text self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Text']]) text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace') self.ann_field(offset, offset+17, text.strip()) elif tag == 0xfc: # Monitor name self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Monitor name']]) text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace') self.ann_field(offset, offset+17, text.strip()) elif tag == 0xfd: # Monitor range limits self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Monitor range limits']]) self.ann_field(offset+5, offset+5, 'Minimum vertical rate: %dHz' % self.cache[offset+5]) self.ann_field(offset+6, offset+6, 'Maximum vertical rate: %dHz' % self.cache[offset+6]) self.ann_field(offset+7, offset+7, 'Minimum horizontal rate: %dkHz' % self.cache[offset+7]) self.ann_field(offset+8, offset+8, 'Maximum horizontal rate: %dkHz' % self.cache[offset+8]) self.ann_field(offset+9, offset+9, 'Maximum pixel clock: %dMHz' % (self.cache[offset+9] * 10)) if self.cache[offset+10] == 0x02: # Secondary GTF curve supported self.ann_field(offset+10, offset+17, 'Secondary timing formula supported') elif tag == 0xfb: # Additional color point data self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Additional color point data']]) elif tag == 0xfa: # Additional standard timing definitions self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Additional standard timing definitions']]) else: self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann, [ANN_SECTIONS, ['Unknown descriptor']]) def decode_descriptors(self, offset): # 4 consecutive 18-byte descriptor blocks for i in range(offset, 0, 18): if self.cache[i] != 0 and self.cache[i+1] != 0: self.decode_detailed_timing(i) else: if self.cache[i+2] == 0 or self.cache[i+4] == 0: self.decode_descriptor(i)