## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2015 Jeremy Swanson ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## import sigrokdecode as srd class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 2 id = 'dsi' name = 'DSI' longname = 'Digital Serial Interface' desc = 'DSI lighting control protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['dsi'] channels = ( {'id': 'dsi', 'name': 'DSI', 'desc': 'DSI data line'}, ) options = ( {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high', 'values': ('active-low', 'active-high')}, ) annotations = ( ('bit', 'Bit'), ('startbit', 'Startbit'), ('Level', 'Dimmer level'), ('raw', 'Raw data'), ) annotation_rows = ( ('bits', 'Bits', (0,)), ('raw', 'Raw Data',(3,)), ('fields', 'Fields', (1, 2,)), ) def __init__(self): self.samplerate = None self.samplenum = None self.edges, self.bits, self.ss_es_bits = [], [], [] self.state = 'IDLE' self.nextSamplePoint = None self.nextSample = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.old_ir = 1 if self.options['polarity'] == 'active-low' else 0 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # One bit: 1666.7us (one half low, one half high). # This is how many samples are in 1TE. self.halfbit = int((self.samplerate * 0.0016667) / 2.0) def putb(self, bit1, bit2, data): ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1] self.put(ss, es, self.out_ann, data) def handle_bits(self, length): a, c, f, g, b = 0, 0, 0, 0, self.bits # Individual raw bits. for i in range(length): if i == 0: ss = max(0, self.bits[0][0]) else: ss = self.ss_es_bits[i - 1][1] es = self.bits[i][0] + (self.halfbit * 2) self.ss_es_bits.append([ss, es]) self.putb(i, i, [0, ['%d' % self.bits[i][1]]]) # Bits[0:0]: Startbit s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S'] self.putb(0, 0, [1, s]) self.putb(0, 0, [3, s]) # Bits[1:8] for i in range(8): f |= (b[1 + i][1] << (7 - i)) g = f / 2.55 if length == 9: # BACKWARD Frame s = ['Data: %02X' % f, 'Dat: %02X' % f, 'Dat: %02X' % f, 'D: %02X' % f, 'D'] self.putb(1, 8, [3, s]) s = ['Level: %d%%' % g, 'Lev: %d%%' % g, 'Lev: %d%%' % g, 'L: %d' % g, 'D'] self.putb(1, 8, [2, s]) return def reset_decoder_state(self): self.edges, self.bits, self.ss_es_bits = [], [], [] self.state = 'IDLE' def decode(self, ss, es, data): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') bit = 0; for (self.samplenum, pins) in data: self.ir = pins[0] # data.itercnt += 1 if self.options['polarity'] == 'active-high': self.ir ^= 1 # Invert. # State machine. if self.state == 'IDLE': # Wait for any edge (rising or falling). if self.old_ir == self.ir: continue # Add in the first half of the start bit. self.edges.append(self.samplenum - int(self.halfbit)) self.edges.append(self.samplenum) # Start bit is 0->1. self.phase0 = self.ir ^ 1 self.state = 'PHASE1' self.old_ir = self.ir # Get the next sample point. # self.nextSamplePoint = self.samplenum + int(self.halfbit / 2) self.old_ir = self.ir # bit = self.ir continue # if(self.samplenum == self.nextSamplePoint): # bit = self.ir # continue if self.old_ir != self.ir: self.edges.append(self.samplenum) elif self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5)): self.edges.append(self.samplenum - int(self.halfbit * 0.5)) else: continue bit = self.old_ir if self.state == 'PHASE0': self.phase0 = bit self.state = 'PHASE1' elif self.state == 'PHASE1': if (bit == 1) and (self.phase0 == 1): # Stop bit if len(self.bits) == 17 or len(self.bits) == 9: # Forward or Backward self.handle_bits(len(self.bits)) self.reset_decoder_state() # Reset upon errors. continue else: self.bits.append([self.edges[-3], bit]) self.state = 'PHASE0' # self.nextSamplePoint = self.edges[-1] + int(self.halfbit / 2) self.old_ir = self.ir