## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012-2014 Uwe Hermann ## Copyright (C) 2013 Matt Ranostay ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import re import sigrokdecode as srd from common.srdhelper import bcd2int days_of_week = ( 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', ) regs = ( 'Seconds', 'Minutes', 'Hours', 'Day', 'Date', 'Month', 'Year', 'Control', 'RAM', ) bits = ( 'Clock halt', 'Seconds', 'Reserved', 'Minutes', '12/24 hours', 'AM/PM', 'Hours', 'Day', 'Date', 'Month', 'Year', 'OUT', 'SQWE', 'RS', 'RAM', ) rates = { 0b00: '1Hz', 0b01: '4096Hz', 0b10: '8192Hz', 0b11: '32768Hz', } DS1307_I2C_ADDRESS = 0x68 def regs_and_bits(): l = [('reg-' + r.lower(), r + ' register') for r in regs] l += [('bit-' + re.sub('\/| ', '-', b).lower(), b + ' bit') for b in bits] return tuple(l) class Decoder(srd.Decoder): api_version = 3 id = 'ds1307' name = 'DS1307' longname = 'Dallas DS1307' desc = 'Realtime clock module protocol.' license = 'gplv2+' inputs = ['i2c'] outputs = ['ds1307'] tags = ['Clock/timing', 'IC'] annotations = regs_and_bits() + ( ('read-datetime', 'Read date/time'), ('write-datetime', 'Write date/time'), ('reg-read', 'Register read'), ('reg-write', 'Register write'), ('warnings', 'Warnings'), ) annotation_rows = ( ('bits', 'Bits', tuple(range(9, 24))), ('regs', 'Registers', tuple(range(9))), ('date-time', 'Date/time', (24, 25, 26, 27)), ('warnings', 'Warnings', (28,)), ) def __init__(self): self.reset() def reset(self): self.state = 'IDLE' self.hours = -1 self.minutes = -1 self.seconds = -1 self.days = -1 self.date = -1 self.months = -1 self.years = -1 self.bits = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss, self.es, self.out_ann, data) def putd(self, bit1, bit2, data): self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data) def putr(self, bit): self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann, [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']]) def handle_reg_0x00(self, b): # Seconds (0-59) / Clock halt bit self.putd(7, 0, [0, ['Seconds', 'Sec', 'S']]) ch = 1 if (b & (1 << 7)) else 0 self.putd(7, 7, [9, ['Clock halt: %d' % ch, 'Clk hlt: %d' % ch, 'CH: %d' % ch, 'CH']]) s = self.seconds = bcd2int(b & 0x7f) self.putd(6, 0, [10, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']]) def handle_reg_0x01(self, b): # Minutes (0-59) self.putd(7, 0, [1, ['Minutes', 'Min', 'M']]) self.putr(7) m = self.minutes = bcd2int(b & 0x7f) self.putd(6, 0, [12, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']]) def handle_reg_0x02(self, b): # Hours (1-12+AM/PM or 0-23) self.putd(7, 0, [2, ['Hours', 'H']]) self.putr(7) ampm_mode = True if (b & (1 << 6)) else False if ampm_mode: self.putd(6, 6, [13, ['12-hour mode', '12h mode', '12h']]) a = 'PM' if (b & (1 << 5)) else 'AM' self.putd(5, 5, [14, [a, a[0]]]) h = self.hours = bcd2int(b & 0x1f) self.putd(4, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']]) else: self.putd(6, 6, [13, ['24-hour mode', '24h mode', '24h']]) h = self.hours = bcd2int(b & 0x3f) self.putd(5, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']]) def handle_reg_0x03(self, b): # Day / day of week (1-7) self.putd(7, 0, [3, ['Day of week', 'Day', 'D']]) for i in (7, 6, 5, 4, 3): self.putr(i) w = self.days = bcd2int(b & 0x07) ws = days_of_week[self.days - 1] self.putd(2, 0, [16, ['Weekday: %s' % ws, 'WD: %s' % ws, 'WD', 'W']]) def handle_reg_0x04(self, b): # Date (1-31) self.putd(7, 0, [4, ['Date', 'D']]) for i in (7, 6): self.putr(i) d = self.date = bcd2int(b & 0x3f) self.putd(5, 0, [17, ['Date: %d' % d, 'D: %d' % d, 'D']]) def handle_reg_0x05(self, b): # Month (1-12) self.putd(7, 0, [5, ['Month', 'Mon', 'M']]) for i in (7, 6, 5): self.putr(i) m = self.months = bcd2int(b & 0x1f) self.putd(4, 0, [18, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']]) def handle_reg_0x06(self, b): # Year (0-99) self.putd(7, 0, [6, ['Year', 'Y']]) y = self.years = bcd2int(b & 0xff) self.years += 2000 self.putd(7, 0, [19, ['Year: %d' % y, 'Y: %d' % y, 'Y']]) def handle_reg_0x07(self, b): # Control Register self.putd(7, 0, [7, ['Control', 'Ctrl', 'C']]) for i in (6, 5, 3, 2): self.putr(i) o = 1 if (b & (1 << 7)) else 0 s = 1 if (b & (1 << 4)) else 0 s2 = 'en' if (b & (1 << 4)) else 'dis' r = rates[b & 0x03] self.putd(7, 7, [20, ['Output control: %d' % o, 'OUT: %d' % o, 'O: %d' % o, 'O']]) self.putd(4, 4, [21, ['Square wave output: %sabled' % s2, 'SQWE: %sabled' % s2, 'SQWE: %d' % s, 'S: %d' % s, 'S']]) self.putd(1, 0, [22, ['Square wave output rate: %s' % r, 'Square wave rate: %s' % r, 'SQW rate: %s' % r, 'Rate: %s' % r, 'RS: %s' % s, 'RS', 'R']]) def handle_reg_0x3f(self, b): # RAM (bytes 0x08-0x3f) self.putd(7, 0, [8, ['RAM', 'R']]) self.putd(7, 0, [23, ['SRAM: 0x%02X' % b, '0x%02X' % b]]) def output_datetime(self, cls, rw): # TODO: Handle read/write of only parts of these items. d = '%s, %02d.%02d.%4d %02d:%02d:%02d' % ( days_of_week[self.days - 1], self.date, self.months, self.years, self.hours, self.minutes, self.seconds) self.put(self.ss_block, self.es, self.out_ann, [cls, ['%s date/time: %s' % (rw, d)]]) def handle_reg(self, b): r = self.reg if self.reg < 8 else 0x3f fn = getattr(self, 'handle_reg_0x%02x' % r) fn(b) # Honor address auto-increment feature of the DS1307. When the # address reaches 0x3f, it will wrap around to address 0. self.reg += 1 if self.reg > 0x3f: self.reg = 0 def is_correct_chip(self, addr): if addr == DS1307_I2C_ADDRESS: return True self.put(self.ss_block, self.es, self.out_ann, [28, ['Ignoring non-DS1307 data (slave 0x%02X)' % addr]]) return False def decode(self, ss, es, data): cmd, databyte = data # Collect the 'BITS' packet, then return. The next packet is # guaranteed to belong to these bits we just stored. if cmd == 'BITS': self.bits = databyte return # Store the start/end samples of this I²C packet. self.ss, self.es = ss, es # State machine. if self.state == 'IDLE': # Wait for an I²C START condition. if cmd != 'START': return self.state = 'GET SLAVE ADDR' self.ss_block = ss elif self.state == 'GET SLAVE ADDR': # Wait for an address write operation. if cmd != 'ADDRESS WRITE': return if not self.is_correct_chip(databyte): self.state = 'IDLE' return self.state = 'GET REG ADDR' elif self.state == 'GET REG ADDR': # Wait for a data write (master selects the slave register). if cmd != 'DATA WRITE': return self.reg = databyte self.state = 'WRITE RTC REGS' elif self.state == 'WRITE RTC REGS': # If we see a Repeated Start here, it's an RTC read. if cmd == 'START REPEAT': self.state = 'READ RTC REGS' return # Otherwise: Get data bytes until a STOP condition occurs. if cmd == 'DATA WRITE': self.handle_reg(databyte) elif cmd == 'STOP': self.output_datetime(25, 'Written') self.state = 'IDLE' elif self.state == 'READ RTC REGS': # Wait for an address read operation. if cmd != 'ADDRESS READ': return if not self.is_correct_chip(databyte): self.state = 'IDLE' return self.state = 'READ RTC REGS2' elif self.state == 'READ RTC REGS2': if cmd == 'DATA READ': self.handle_reg(databyte) elif cmd == 'STOP': self.output_datetime(24, 'Read') self.state = 'IDLE'