## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2015 Jeremy Swanson ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## import sigrokdecode as srd from .lists import * class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'dali' name = 'DALI' longname = 'Digital Addressable Lighting Interface' desc = 'DALI lighting control protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['dali'] channels = ( {'id': 'dali', 'name': 'DALI', 'desc': 'DALI data line'}, ) options = ( {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low', 'values': ('active-low', 'active-high')}, ) annotations = ( ('bit', 'Bit'), ('startbit', 'Startbit'), ('sbit', 'Select bit'), ('ybit', 'Individual or group'), ('address', 'Address'), ('command', 'Command'), ('reply', 'Reply data'), ('raw', 'Raw data'), ) annotation_rows = ( ('bits', 'Bits', (0,)), ('raw', 'Raw data', (7,)), ('fields', 'Fields', (1, 2, 3, 4, 5, 6)), ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.samplenum = None self.edges, self.bits, self.ss_es_bits = [], [], [] self.state = 'IDLE' self.dev_type = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.old_dali = 1 if self.options['polarity'] == 'active-low' else 0 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # One bit: 833.33us (one half low, one half high). # This is how may samples are in 1TE. self.halfbit = int((self.samplerate * 0.0008333) / 2.0) def putb(self, bit1, bit2, data): ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1] self.put(ss, es, self.out_ann, data) def handle_bits(self, length): a, c, f, g, b = 0, 0, 0, 0, self.bits # Individual raw bits. for i in range(length): if i == 0: ss = max(0, self.bits[0][0]) else: ss = self.ss_es_bits[i - 1][1] es = self.bits[i][0] + (self.halfbit * 2) self.ss_es_bits.append([ss, es]) self.putb(i, i, [0, ['%d' % self.bits[i][1]]]) # Bits[0:0]: Startbit s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S'] self.putb(0, 0, [1, s]) self.putb(0, 0, [7, s]) # Bits[1:8] for i in range(8): f |= (b[1 + i][1] << (7 - i)) if length == 9: # BACKWARD Frame s = ['Reply: %02X' % f, 'Rply: %02X' % f, 'Rep: %02X' % f, 'R: %02X' % f, 'R'] self.putb(1, 8, [7, s]) s = ['Reply: %d' % f, 'Rply: %d' % f, 'Rep: %d' % f, 'R: %d' % f, 'R'] self.putb(1, 8, [6, s]) return # FORWARD FRAME # Bits[9:16]: Command/data (MSB-first) for i in range(8): c |= (b[9 + i][1] << (7 - i)) # Raw output s = ['Raw data: %02X' % f, 'Raw: %02X' % f, 'Raw: %02X' % f, 'R: %02X' % f, 'R'] self.putb(1, 8, [7, s]) s = ['Raw data: %02X' % c, 'Raw: %02X' % c, 'Raw: %02X' % c, 'R: %02X' % c, 'R'] self.putb(9, 16, [7, s]) # Bits[8:8]: Select bit # s = ['Selectbit: %d' % b[8][1], 'SEL: %d' % b[8][1], 'SEL', 'SE', 'S'] if b[8][1] == 1: s = ['Command', 'Comd', 'COM', 'CO', 'C'] else: s = ['Arc Power Level', 'Arc Pwr', 'ARC', 'AC', 'A'] self.putb(8, 8, [1, s]) # f &= 254 # Clear the select bit. if f >= 254: # BROADCAST s = ['BROADCAST', 'Brdcast', 'BC', 'B', 'B'] self.putb(1, 7, [5, s]) elif f >= 160: # Extended command 0b10100000 if f == 0xC1: # DALI_ENABLE_DEVICE_TYPE_X self.dev_type = -1 x = extended_commands.get(f, ['Unknown', 'Unk']) s = ['Extended Command: %02X (%s)' % (f, x[0]), 'XC: %02X (%s)' % (f, x[1]), 'XC: %02X' % f, 'X: %02X' % f, 'X'] self.putb(1, 8, [5, s]) elif f >= 128: # Group # Bits[1:1]: Ybit s = ['YBit: %d' % b[1][1], 'YB: %d' % b[1][1], 'YB', 'Y', 'Y'] self.putb(1, 1, [3, s]) g = (f & 127) >> 1 s = ['Group address: %d' % g, 'Group: %d' % g, 'GP: %d' % g, 'G: %d' % g, 'G'] self.putb(2,7, [4, s]) else: # Short address # Bits[1:1]: Ybit s = ['YBit: %d' % b[1][1], 'YB: %d' % b[1][1], 'YB', 'Y', 'Y'] self.putb(1, 1, [3, s]) a = f >> 1 s = ['Short address: %d' % a, 'Addr: %d' % a, 'Addr: %d' % a, 'A: %d' % a, 'A'] self.putb(2, 7, [4, s]) # Bits[9:16]: Command/data (MSB-first) if f >= 160 and f < 254: if self.dev_type == -1: self.dev_type = c s = ['Type: %d' % c, 'Typ: %d' % c, 'Typ: %d' % c, 'T: %d' % c, 'D'] else: self.dev_type = None s = ['Data: %d' % c, 'Dat: %d' % c, 'Dat: %d' % c, 'D: %d' % c, 'D'] elif b[8][1] == 1: un = c & 0xF0 ln = c & 0x0F if un == 0x10: # Set scene command x = ['Recall Scene %d' % ln, 'SC %d' % ln] elif un == 0x40: x = ['Store DTR as Scene %d' % ln, 'SC %d = DTR' % ln] elif un == 0x50: x = ['Delete Scene %d' % ln, 'DEL SC %d' % ln] elif un == 0x60: x = ['Add to Group %d' % ln, 'Grp %d Add' % ln] elif un == 0x70: x = ['Remove from Group %d' % ln, 'Grp %d Del' % ln] elif un == 0xB0: x = ['Query Scene %d Level' % ln, 'Sc %d Level' % ln] elif c >= 224: # Application specific commands if self.dev_type == 8: x = dali_device_type8.get(c, ['Unknown App', 'Unk']) else: x = ['Application Specific Command %d' % c, 'App Cmd %d' % c] else: x = dali_commands.get(c, ['Unknown', 'Unk']) s = ['Command: %d (%s)' % (c, x[0]), 'Com: %d (%s)' % (c, x[1]), 'Com: %d' % c, 'C: %d' % c, 'C'] else: s = ['Arc Power Level: %d' % c, 'Level: %d' % c, 'Lev: %d' % c, 'L: %d' % c, 'L'] self.putb(9, 16, [5, s]) def reset_decoder_state(self): self.edges, self.bits, self.ss_es_bits = [], [], [] self.state = 'IDLE' def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') bit = 0 while True: # TODO: Come up with more appropriate self.wait() conditions. (dali,) = self.wait() if self.options['polarity'] == 'active-high': dali ^= 1 # Invert. # State machine. if self.state == 'IDLE': # Wait for any edge (rising or falling). if self.old_dali == dali: continue self.edges.append(self.samplenum) self.state = 'PHASE0' self.old_dali = dali continue if self.old_dali != dali: self.edges.append(self.samplenum) elif self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5)): self.edges.append(self.samplenum - int(self.halfbit * 0.5)) else: continue bit = self.old_dali if self.state == 'PHASE0': self.phase0 = bit self.state = 'PHASE1' elif self.state == 'PHASE1': if (bit == 1) and (self.phase0 == 1): # Stop bit. if len(self.bits) == 17 or len(self.bits) == 9: # Forward or Backward. self.handle_bits(len(self.bits)) self.reset_decoder_state() # Reset upon errors. continue else: self.bits.append([self.edges[-3], bit]) self.state = 'PHASE0' self.old_dali = dali