## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2018 Michalis Pappas ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd WORD_ADDR_RESET = 0x00 WORD_ADDR_SLEEP = 0x01 WORD_ADDR_IDLE = 0x02 WORD_ADDR_COMMAND = 0x03 WORD_ADDR = {0x00: 'RESET', 0x01: 'SLEEP', 0x02: 'IDLE', 0x03: 'COMMAND'} OPCODE_DERIVE_KEY = 0x1c OPCODE_DEV_REV = 0x30 OPCODE_GEN_DIG = 0x15 OPCODE_HMAC = 0x11 OPCODE_CHECK_MAC = 0x28 OPCODE_LOCK = 0x17 OPCODE_MAC = 0x08 OPCODE_NONCE = 0x16 OPCODE_PAUSE = 0x01 OPCODE_RANDOM = 0x1b OPCODE_READ = 0x02 OPCODE_SHA = 0x47 OPCODE_UPDATE_EXTRA = 0x20 OPCODE_WRITE = 0x12 OPCODES = { 0x01: 'Pause', 0x02: 'Read', 0x08: 'MAC', 0x11: 'HMAC', 0x12: 'Write', 0x15: 'GenDig', 0x16: 'Nonce', 0x17: 'Lock', 0x1b: 'Random', 0x1c: 'DeriveKey', 0x20: 'UpdateExtra', 0x28: 'CheckMac', 0x30: 'DevRev', 0x47: 'SHA', } ZONE_CONFIG = 0x00 ZONE_OTP = 0x01 ZONE_DATA = 0x02 ZONES = {0x00: 'CONFIG', 0x01: 'OTP', 0x02: 'DATA'} STATUS_SUCCESS = 0x00 STATUS_CHECKMAC_FAIL = 0x01 STATUS_PARSE_ERROR = 0x03 STATUS_EXECUTION_ERROR = 0x0f STATUS_READY = 0x11 STATUS_CRC_COMM_ERROR = 0xff STATUS = { 0x00: 'Command success', 0x01: 'Checkmac failure', 0x03: 'Parse error', 0x0f: 'Execution error', 0x11: 'Ready', 0xff: 'CRC / communications error', } class Decoder(srd.Decoder): api_version = 3 id = 'atsha204a' name = 'ATSHA204A' longname = 'Microchip ATSHA204A' desc = 'Microchip ATSHA204A crypto authentication protocol.' license = 'gplv2+' inputs = ['i2c'] outputs = [] tags = ['Security/crypto', 'IC', 'Memory'] annotations = ( ('waddr', 'Word address'), ('count', 'Count'), ('opcode', 'Opcode'), ('param1', 'Param1'), ('param2', 'Param2'), ('data', 'Data'), ('crc', 'CRC'), ('status', 'Status'), ('warning', 'Warning'), ) annotation_rows = ( ('frame', 'Frame', (0, 1, 2, 3, 4, 5, 6)), ('status', 'Status', (7,)), ('warnings', 'Warnings', (8,)), ) def __init__(self): self.reset() def reset(self): self.state = 'IDLE' self.waddr = self.opcode = -1 self.ss_block = self.es_block = 0 self.bytes = [] def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def output_tx_bytes(self): b = self.bytes if len(b) < 1: # Ignore wakeup. return self.waddr = b[0][2] self.put_waddr(b[0]) if self.waddr == WORD_ADDR_COMMAND: count = b[1][2] self.put_count(b[1]) if len(b) - 1 != count: self.put_warning(b[0][0], b[-1][1], 'Invalid frame length: Got {}, expecting {} '.format( len(b) - 1, count)) return self.opcode = b[2][2] self.put_opcode(b[2]) self.put_param1(b[3]) self.put_param2([b[4], b[5]]) self.put_data(b[6:-2]) self.put_crc([b[-2], b[-1]]) def output_rx_bytes(self): b = self.bytes count = b[0][2] self.put_count(b[0]) if self.waddr == WORD_ADDR_RESET: self.put_data([b[1]]) self.put_crc([b[2], b[3]]) self.put_status(b[0][0], b[-1][1], b[1][2]) elif self.waddr == WORD_ADDR_COMMAND: if count == 4: # Status / Error. self.put_data([b[1]]) self.put_crc([b[2], b[3]]) self.put_status(b[0][0], b[-1][1], b[1][2]) else: self.put_data(b[1:-2]) self.put_crc([b[-2], b[-1]]) def putx(self, s, data): self.put(s[0], s[1], self.out_ann, data) def puty(self, s, data): self.put(s[0][0], s[1][1], self.out_ann, data) def putz(self, ss, es, data): self.put(ss, es, self.out_ann, data) def put_waddr(self, s): self.putx(s, [0, ['Word addr: %s' % WORD_ADDR[s[2]]]]) def put_count(self, s): self.putx(s, [1, ['Count: %s' % s[2]]]) def put_opcode(self, s): self.putx(s, [2, ['Opcode: %s' % OPCODES[s[2]]]]) def put_param1(self, s): op = self.opcode if op in (OPCODE_CHECK_MAC, OPCODE_DEV_REV, OPCODE_HMAC, \ OPCODE_MAC, OPCODE_NONCE, OPCODE_RANDOM, OPCODE_SHA): self.putx(s, [3, ['Mode: %02X' % s[2]]]) elif op == OPCODE_DERIVE_KEY: self.putx(s, [3, ['Random: %s' % s[2]]]) elif op == OPCODE_GEN_DIG: self.putx(s, [3, ['Zone: %s' % ZONES[s[2]]]]) elif op == OPCODE_LOCK: self.putx(s, [3, ['Zone: {}, Summary: {}'.format( 'DATA/OTP' if s[2] else 'CONFIG', 'Ignored' if s[2] & 0x80 else 'Used')]]) elif op == OPCODE_PAUSE: self.putx(s, [3, ['Selector: %02X' % s[2]]]) elif op == OPCODE_READ: self.putx(s, [3, ['Zone: {}, Length: {}'.format(ZONES[s[2] & 0x03], '32 bytes' if s[2] & 0x90 else '4 bytes')]]) elif op == OPCODE_WRITE: self.putx(s, [3, ['Zone: {}, Encrypted: {}, Length: {}'.format(ZONES[s[2] & 0x03], 'Yes' if s[2] & 0x40 else 'No', '32 bytes' if s[2] & 0x90 else '4 bytes')]]) else: self.putx(s, [3, ['Param1: %02X' % s[2]]]) def put_param2(self, s): op = self.opcode if op == OPCODE_DERIVE_KEY: self.puty(s, [4, ['TargetKey: {:02x} {:02x}'.format(s[1][2], s[0][2])]]) elif op in (OPCODE_NONCE, OPCODE_PAUSE, OPCODE_RANDOM): self.puty(s, [4, ['Zero: {:02x} {:02x}'.format(s[1][2], s[0][2])]]) elif op in (OPCODE_HMAC, OPCODE_MAC, OPCODE_CHECK_MAC, OPCODE_GEN_DIG): self.puty(s, [4, ['SlotID: {:02x} {:02x}'.format(s[1][2], s[0][2])]]) elif op == OPCODE_LOCK: self.puty(s, [4, ['Summary: {:02x} {:02x}'.format(s[1][2], s[0][2])]]) elif op in (OPCODE_READ, OPCODE_WRITE): self.puty(s, [4, ['Address: {:02x} {:02x}'.format(s[1][2], s[0][2])]]) elif op == OPCODE_UPDATE_EXTRA: self.puty(s, [4, ['NewValue: {:02x}'.format(s[0][2])]]) else: self.puty(s, [4, ['-']]) def put_data(self, s): if len(s) == 0: return op = self.opcode if op == OPCODE_CHECK_MAC: self.putz(s[0][0], s[31][1], [5, ['ClientChal: %s' % ' '.join(format(i[2], '02x') for i in s[0:31])]]) self.putz(s[32][0], s[63][1], [5, ['ClientResp: %s' % ' '.join(format(i[2], '02x') for i in s[32:63])]]) self.putz(s[64][0], s[76][1], [5, ['OtherData: %s' % ' '.join(format(i[2], '02x') for i in s[64:76])]]) elif op == OPCODE_DERIVE_KEY: self.putz(s[0][0], s[31][1], [5, ['MAC: %s' % ' '.join(format(i[2], '02x') for i in s)]]) elif op == OPCODE_GEN_DIG: self.putz(s[0][0], s[3][1], [5, ['OtherData: %s' % ' '.join(format(i[2], '02x') for i in s)]]) elif op == OPCODE_MAC: self.putz(s[0][0], s[31][1], [5, ['Challenge: %s' % ' '.join(format(i[2], '02x') for i in s)]]) elif op == OPCODE_WRITE: if len(s) > 32: # Value + MAC. self.putz(s[0][0], s[-31][1], [5, ['Value: %s' % ' '.join(format(i[2], '02x') for i in s)]]) self.putz(s[-32][0], s[-1][1], [5, ['MAC: %s' % ' '.join(format(i[2], '02x') for i in s)]]) else: # Just value. self.putz(s[0][0], s[-1][1], [5, ['Value: %s' % ' '.join(format(i[2], '02x') for i in s)]]) else: self.putz(s[0][0], s[-1][1], [5, ['Data: %s' % ' '.join(format(i[2], '02x') for i in s)]]) def put_crc(self, s): self.puty(s, [6, ['CRC: {:02X} {:02X}'.format(s[0][2], s[1][2])]]) def put_status(self, ss, es, status): self.putz(ss, es, [7, ['Status: %s' % STATUS[status]]]) def put_warning(self, ss, es, msg): self.putz(ss, es, [8, ['Warning: %s' % msg]]) def decode(self, ss, es, data): cmd, databyte = data # State machine. if self.state == 'IDLE': # Wait for an I²C START condition. if cmd != 'START': return self.state = 'GET SLAVE ADDR' self.ss_block = ss elif self.state == 'GET SLAVE ADDR': # Wait for an address read/write operation. if cmd == 'ADDRESS READ': self.state = 'READ REGS' elif cmd == 'ADDRESS WRITE': self.state = 'WRITE REGS' elif self.state == 'READ REGS': if cmd == 'DATA READ': self.bytes.append([ss, es, databyte]) elif cmd == 'STOP': self.es_block = es # Reset the opcode before received data, as this causes # responses to be displayed incorrectly. self.opcode = -1 self.output_rx_bytes() self.waddr = -1 self.bytes = [] self.state = 'IDLE' elif self.state == 'WRITE REGS': if cmd == 'DATA WRITE': self.bytes.append([ss, es, databyte]) elif cmd == 'STOP': self.es_block = es self.output_tx_bytes() self.bytes = [] self.state = 'IDLE'