From d37961b0c723abba3d70c9ef1a94f78bf4245f7d Mon Sep 17 00:00:00 2001 From: Iztok Jeras Date: Mon, 9 Jul 2012 23:29:34 +0200 Subject: onewire: preparations for protocol separation between link and network layers --- decoders/onewire/onewire.py | 363 -------------------------------------------- 1 file changed, 363 deletions(-) delete mode 100644 decoders/onewire/onewire.py (limited to 'decoders/onewire/onewire.py') diff --git a/decoders/onewire/onewire.py b/decoders/onewire/onewire.py deleted file mode 100644 index e1972a8..0000000 --- a/decoders/onewire/onewire.py +++ /dev/null @@ -1,363 +0,0 @@ -## -## This file is part of the sigrok project. -## -## Copyright (C) 2012 Iztok Jeras -## -## This program is free software; you can redistribute it and/or modify -## it under the terms of the GNU General Public License as published by -## the Free Software Foundation; either version 2 of the License, or -## (at your option) any later version. -## -## This program is distributed in the hope that it will be useful, -## but WITHOUT ANY WARRANTY; without even the implied warranty of -## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -## GNU General Public License for more details. -## -## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -## - -# 1-Wire protocol decoder - -import sigrokdecode as srd - -# Annotation feed formats -ANN_LINK = 0 -ANN_NETWORK = 1 -ANN_TRANSPORT = 2 - -# a dictionary of ROM commands and their names -rom_command = {0x33: "READ ROM", - 0x0f: "CONDITIONAL READ ROM", - 0xcc: "SKIP ROM", - 0x55: "MATCH ROM", - 0xf0: "SEARCH ROM", - 0xec: "CONDITIONAL SEARCH ROM", - 0x3c: "OVERDRIVE SKIP ROM", - 0x6d: "OVERDRIVE MATCH ROM"} - -class Decoder(srd.Decoder): - api_version = 1 - id = 'onewire' - name = '1-Wire' - longname = '1-Wire serial communication bus' - desc = 'Bidirectional, half-duplex, asynchronous serial bus.' - license = 'gplv2+' - inputs = ['logic'] - outputs = ['onewire'] - probes = [ - {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'}, - ] - optional_probes = [ - {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'}, - ] - options = { - 'overdrive' : ['Overdrive', 1], - 'cnt_normal_bit' : ['Time (in samplerate periods) for normal mode sample bit' , 0], - 'cnt_normal_presence' : ['Time (in samplerate periods) for normal mode sample presence', 0], - 'cnt_normal_reset' : ['Time (in samplerate periods) for normal mode reset' , 0], - 'cnt_overdrive_bit' : ['Time (in samplerate periods) for overdrive mode sample bit' , 0], - 'cnt_overdrive_presence': ['Time (in samplerate periods) for overdrive mode sample presence', 0], - 'cnt_overdrive_reset' : ['Time (in samplerate periods) for overdrive mode reset' , 0], - } - annotations = [ - ['Link', 'Link layer events (reset, presence, bit slots)'], - ['Network', 'Network layer events (device addressing)'], - ['Transport', 'Transport layer events'], - ] - - def __init__(self, **kwargs): - # Common variables - self.samplenum = 0 - # Link layer variables - self.lnk_state = 'WAIT FOR FALLING EDGE' - self.lnk_event = 'NONE' - self.lnk_present = 0 - self.lnk_bit = 0 - self.lnk_overdrive = 0 - # Event timing variables - self.lnk_fall = 0 - self.lnk_rise = 0 - self.net_beg = 0 - self.net_end = 0 - self.net_len = 0 - # Network layer variables - self.net_state = 'IDLE' - self.net_cnt = 0 - self.net_search = "P" - self.net_data_p = 0x0 - self.net_data_n = 0x0 - self.net_data = 0x0 - self.net_rom = 0x0000000000000000 - - def start(self, metadata): - self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire') - self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire') - - # check if samplerate is appropriate - self.samplerate = metadata['samplerate'] - if (self.options['overdrive']): - self.put(0, 0, self.out_ann, [ANN_LINK, - ['NOTE: Sample rate checks assume overdrive mode.']]) - if (self.samplerate < 2000000): - self.put(0, 0, self.out_ann, [ANN_LINK, - ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']]) - elif (self.samplerate < 5000000): - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']]) - else: - self.put(0, 0, self.out_ann, [ANN_LINK, - ['NOTE: Sample rate checks assume normal mode only.']]) - if (self.samplerate < 400000): - self.put(0, 0, self.out_ann, [ANN_LINK, - ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']]) - elif (self.samplerate < 1000000): - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']]) - - # The default 1-Wire time base is 30us, this is used to calculate sampling times. - if (self.options['cnt_normal_bit']): - self.cnt_normal_bit = self.options['cnt_normal_bit'] - else: - self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns - if (self.options['cnt_normal_presence']): - self.cnt_normal_presence = self.options['cnt_normal_presence'] - else: - self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns - if (self.options['cnt_normal_reset']): - self.cnt_normal_reset = self.options['cnt_normal_reset'] - else: - self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns - if (self.options['cnt_overdrive_bit']): - self.cnt_overdrive_bit = self.options['cnt_overdrive_bit'] - else: - self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns - if (self.options['cnt_overdrive_presence']): - self.cnt_overdrive_presence = self.options['cnt_overdrive_presence'] - else: - self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns - if (self.options['cnt_overdrive_reset']): - self.cnt_overdrive_reset = self.options['cnt_overdrive_reset'] - else: - self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns - - # calculating the slot size - self.cnt_normal_slot = int(float(self.samplerate) * 0.000060) - 1 # 60ns - self.cnt_overdrive_slot = int(float(self.samplerate) * 0.000006) - 1 # 6ns - - # organize values into lists - self.cnt_bit = [self.cnt_normal_bit , self.cnt_overdrive_bit ] - self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence] - self.cnt_reset = [self.cnt_normal_reset , self.cnt_overdrive_reset ] - self.cnt_slot = [self.cnt_normal_slot , self.cnt_overdrive_slot ] - - # Check if sample times are in the allowed range - time_min = float(self.cnt_normal_bit ) / self.samplerate - time_max = float(self.cnt_normal_bit+1) / self.samplerate - if ( (time_min < 0.000005) or (time_max > 0.000015) ) : - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).' - % (time_min*1000000, time_max*1000000)]]) - time_min = float(self.cnt_normal_presence ) / self.samplerate - time_max = float(self.cnt_normal_presence+1) / self.samplerate - if ( (time_min < 0.0000681) or (time_max > 0.000075) ) : - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).' - % (time_min*1000000, time_max*1000000)]]) - time_min = float(self.cnt_overdrive_bit ) / self.samplerate - time_max = float(self.cnt_overdrive_bit+1) / self.samplerate - if ( (time_min < 0.000001) or (time_max > 0.000002) ) : - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).' - % (time_min*1000000, time_max*1000000)]]) - time_min = float(self.cnt_overdrive_presence ) / self.samplerate - time_max = float(self.cnt_overdrive_presence+1) / self.samplerate - if ( (time_min < 0.0000073) or (time_max > 0.000010) ) : - self.put(0, 0, self.out_ann, [ANN_LINK, - ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).' - % (time_min*1000000, time_max*1000000)]]) - - def report(self): - pass - - def decode(self, ss, es, data): - for (self.samplenum, (owr, pwr)) in data: - - # Data link layer - - # Clear events. - self.lnk_event = "NONE" - # State machine. - if self.lnk_state == 'WAIT FOR FALLING EDGE': - # The start of a cycle is a falling edge. - if (owr == 0): - # Save the sample number for the falling edge. - self.lnk_fall = self.samplenum - # Go to waiting for sample time - self.lnk_state = 'WAIT FOR DATA SAMPLE' - elif self.lnk_state == 'WAIT FOR DATA SAMPLE': - # Sample data bit - if (self.samplenum - self.lnk_fall == self.cnt_bit[self.lnk_overdrive]): - self.lnk_bit = owr & 0x1 - self.lnk_event = "DATA BIT" - if (self.lnk_bit): self.lnk_state = 'WAIT FOR FALLING EDGE' - else : self.lnk_state = 'WAIT FOR RISING EDGE' - self.put(self.lnk_fall, self.cnt_bit[self.lnk_overdrive], self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]]) - elif self.lnk_state == 'WAIT FOR RISING EDGE': - # The end of a cycle is a rising edge. - if (owr == 1): - # Check if this was a reset cycle - if (self.samplenum - self.lnk_fall > self.cnt_normal_reset): - # Save the sample number for the falling edge. - self.lnk_rise = self.samplenum - # Send a reset event to the next protocol layer. - self.lnk_event = "RESET" - self.lnk_state = "WAIT FOR PRESENCE DETECT" - self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET']) - self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET']]) - self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET']]) - # Reset the timer. - self.lnk_fall = self.samplenum - elif ((self.samplenum - self.lnk_fall > self.cnt_overdrive_reset) and (self.lnk_overdrive)): - # Save the sample number for the falling edge. - self.lnk_rise = self.samplenum - # Send a reset event to the next protocol layer. - self.lnk_event = "RESET" - self.lnk_state = "WAIT FOR PRESENCE DETECT" - self.put(self.lnk_fall, self.lnk_rise, self.out_proto, ['RESET OVERDRIVE']) - self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']]) - self.put(self.lnk_fall, self.lnk_rise, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']]) - # Reset the timer. - self.lnk_fall = self.samplenum - # Otherwise this is assumed to be a data bit. - else : - self.lnk_state = "WAIT FOR FALLING EDGE" - elif self.lnk_state == 'WAIT FOR PRESENCE DETECT': - # Sample presence status - if (self.samplenum - self.lnk_rise == self.cnt_presence[self.lnk_overdrive]): - self.lnk_present = owr & 0x1 - # Save the sample number for the falling edge. - if not (self.lnk_present) : self.lnk_fall = self.samplenum - # create presence detect event - #self.lnk_event = "PRESENCE DETECT" - if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE' - else : self.lnk_state = 'WAIT FOR RISING EDGE' - present_str = "False" if self.lnk_present else "True" - self.put(self.samplenum, 0, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]]) - self.put(self.samplenum, 0, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]]) - else: - raise Exception('Invalid lnk_state: %d' % self.lnk_state) - - # Network layer - - # State machine. - if (self.lnk_event == "RESET"): - self.net_state = "COMMAND" - self.net_search = "P" - self.net_cnt = 0 - elif (self.net_state == "IDLE"): - pass - elif (self.net_state == "COMMAND"): - # Receiving and decoding a ROM command - if (self.onewire_collect(8)): - self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, - ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]]) - if (self.net_data == 0x33): # READ ROM - self.net_state = "GET ROM" - elif (self.net_data == 0x0f): # CONDITIONAL READ ROM - self.net_state = "GET ROM" - elif (self.net_data == 0xcc): # SKIP ROM - self.net_state = "TRANSPORT" - elif (self.net_data == 0x55): # MATCH ROM - self.net_state = "GET ROM" - elif (self.net_data == 0xf0): # SEARCH ROM - self.net_state = "SEARCH ROM" - elif (self.net_data == 0xec): # CONDITIONAL SEARCH ROM - self.net_state = "SEARCH ROM" - elif (self.net_data == 0x3c): # OVERDRIVE SKIP ROM - self.lnk_overdrive = 1 - self.net_state = "TRANSPORT" - elif (self.net_data == 0x69): # OVERDRIVE MATCH ROM - self.lnk_overdrive = 1 - self.net_state = "GET ROM" - elif (self.net_state == "GET ROM"): - # A 64 bit device address is selected - # family code (1B) + serial number (6B) + CRC (1B) - if (self.onewire_collect(64)): - self.net_rom = self.net_data & 0xffffffffffffffff - self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]]) - self.net_state = "TRANSPORT" - elif (self.net_state == "SEARCH ROM"): - # A 64 bit device address is searched for - # family code (1B) + serial number (6B) + CRC (1B) - if (self.onewire_search(64)): - self.net_rom = self.net_data & 0xffffffffffffffff - self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]]) - self.net_state = "TRANSPORT" - elif (self.net_state == "TRANSPORT"): - # The transport layer is handled in byte sized units - if (self.onewire_collect(8)): - self.put(self.net_beg, self.net_len, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]]) - self.put(self.net_beg, self.net_len, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]]) - self.put(self.net_beg, self.net_len, self.out_proto, ['transfer', self.net_data]) - # TODO: Sending translort layer data to 1-Wire device models - else: - raise Exception('Invalid net_state: %s' % self.net_state) - - - # Link/Network layer data collector - def onewire_collect (self, length): - if (self.lnk_event == "DATA BIT"): - # Storing the sampe this sequence begins with - if (self.net_cnt == 1): - self.net_beg = self.lnk_fall - self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt) - self.net_cnt = self.net_cnt + 1 - # Storing the sampe this sequence ends with - # In case the full length of the sequence is received, return 1 - if (self.net_cnt == length): - self.net_end = self.lnk_fall + self.cnt_slot[self.lnk_overdrive] - self.net_len = self.net_end - self.net_beg - self.net_data = self.net_data & ((1<