diff options
Diffstat (limited to 'decoders/uart/uart.py')
-rw-r--r-- | decoders/uart/uart.py | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/decoders/uart/uart.py b/decoders/uart/uart.py new file mode 100644 index 0000000..4752c7d --- /dev/null +++ b/decoders/uart/uart.py @@ -0,0 +1,432 @@ +## +## This file is part of the sigrok project. +## +## Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de> +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, write to the Free Software +## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## + +# +# UART protocol decoder +# + +# +# Universal Asynchronous Receiver Transmitter (UART) is a simple serial +# communication protocol which allows two devices to talk to each other. +# +# It uses just two data signals and a ground (GND) signal: +# - RX/RXD: Receive signal +# - TX/TXD: Transmit signal +# +# The protocol is asynchronous, i.e., there is no dedicated clock signal. +# Rather, both devices have to agree on a baudrate (number of bits to be +# transmitted per second) beforehand. Baudrates can be arbitrary in theory, +# but usually the choice is limited by the hardware UARTs that are used. +# Common values are 9600 or 115200. +# +# The protocol allows full-duplex transmission, i.e. both devices can send +# data at the same time. However, unlike SPI (which is always full-duplex, +# i.e., each send operation is automatically also a receive operation), UART +# allows one-way communication, too. In such a case only one signal (and GND) +# is required. +# +# The data is sent over the TX line in so-called 'frames', which consist of: +# - Exactly one start bit (always 0/low). +# - Between 5 and 9 data bits. +# - An (optional) parity bit. +# - One or more stop bit(s). +# +# The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the +# receiver can continually monitor its RX line for a falling edge, in order +# to detect the start bit. +# +# Once detected, it can (due to the agreed-upon baudrate and thus the known +# width/duration of one UART bit) sample the state of the RX line "in the +# middle" of each (start/data/parity/stop) bit it wants to analyze. +# +# It is configurable whether there is a parity bit in a frame, and if yes, +# which type of parity is used: +# - None: No parity bit is included. +# - Odd: The number of 1 bits in the data (and parity bit itself) is odd. +# - Even: The number of 1 bits in the data (and parity bit itself) is even. +# - Mark/one: The parity bit is always 1/high (also called 'mark state'). +# - Space/zero: The parity bit is always 0/low (also called 'space state'). +# +# It is also configurable how many stop bits are to be used: +# - 1 stop bit (most common case) +# - 2 stop bits +# - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width) +# - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width) +# +# The bit order of the 5-9 data bits is LSB-first. +# +# Possible special cases: +# - One or both data lines could be inverted, which also means that the idle +# state of the signal line(s) is low instead of high. +# - Only the data bits on one or both data lines (and the parity bit) could +# be inverted (but the start/stop bits remain non-inverted). +# - The bit order could be MSB-first instead of LSB-first. +# - The baudrate could change in the middle of the communication. This only +# happens in very special cases, and can only work if both devices know +# to which baudrate they are to switch, and when. +# - Theoretically, the baudrate on RX and the one on TX could also be +# different, but that's a very obscure case and probably doesn't happen +# very often in practice. +# +# Error conditions: +# - If there is a parity bit, but it doesn't match the expected parity, +# this is called a 'parity error'. +# - If there are no stop bit(s), that's called a 'frame error'. +# +# More information: +# TODO: URLs +# + +# +# Protocol output format: +# +# UART packet: +# [<packet-type>, <rxtx>, <packet-data>] +# +# This is the list of <packet-types>s and their respective <packet-data>: +# - T_START: The data is the (integer) value of the start bit (0 or 1). +# - T_DATA: The data is the (integer) value of the UART data. Valid values +# range from 0 to 512 (as the data can be up to 9 bits in size). +# - T_PARITY: The data is the (integer) value of the parity bit (0 or 1). +# - T_STOP: The data is the (integer) value of the stop bit (0 or 1). +# - T_INVALID_START: The data is the (integer) value of the start bit (0 or 1). +# - T_INVALID_STOP: The data is the (integer) value of the stop bit (0 or 1). +# - T_PARITY_ERROR: The data is a tuple with two entries. The first one is +# the expected parity value, the second is the actual parity value. +# +# The <rxtx> field is 0 for RX packets, 1 for TX packets. +# + +import sigrokdecode as srd + +# States +WAIT_FOR_START_BIT = 0 +GET_START_BIT = 1 +GET_DATA_BITS = 2 +GET_PARITY_BIT = 3 +GET_STOP_BITS = 4 + +# Used for differentiating between the two data directions. +RX = 0 +TX = 1 + +# Parity options +PARITY_NONE = 0 +PARITY_ODD = 1 +PARITY_EVEN = 2 +PARITY_ZERO = 3 +PARITY_ONE = 4 + +# Stop bit options +STOP_BITS_0_5 = 0 +STOP_BITS_1 = 1 +STOP_BITS_1_5 = 2 +STOP_BITS_2 = 3 + +# Bit order options +LSB_FIRST = 0 +MSB_FIRST = 1 + +# Annotation feed formats +ANN_ASCII = 0 +ANN_DEC = 1 +ANN_HEX = 2 +ANN_OCT = 3 +ANN_BITS = 4 + +# Protocol output packet types +T_START = 0 +T_DATA = 1 +T_PARITY = 2 +T_STOP = 3 +T_INVALID_START = 4 +T_INVALID_STOP = 5 +T_PARITY_ERROR = 6 + +# Given a parity type to check (odd, even, zero, one), the value of the +# parity bit, the value of the data, and the length of the data (5-9 bits, +# usually 8 bits) return True if the parity is correct, False otherwise. +# PARITY_NONE is _not_ allowed as value for 'parity_type'. +def parity_ok(parity_type, parity_bit, data, num_data_bits): + + # Handle easy cases first (parity bit is always 1 or 0). + if parity_type == PARITY_ZERO: + return parity_bit == 0 + elif parity_type == PARITY_ONE: + return parity_bit == 1 + + # Count number of 1 (high) bits in the data (and the parity bit itself!). + parity = bin(data).count('1') + parity_bit + + # Check for odd/even parity. + if parity_type == PARITY_ODD: + return (parity % 2) == 1 + elif parity_type == PARITY_EVEN: + return (parity % 2) == 0 + else: + raise Exception('Invalid parity type: %d' % parity_type) + +class Decoder(srd.Decoder): + id = 'uart' + name = 'UART' + longname = 'Universal Asynchronous Receiver/Transmitter' + desc = 'Universal Asynchronous Receiver/Transmitter (UART)' + longdesc = 'TODO.' + license = 'gplv2+' + inputs = ['logic'] + outputs = ['uart'] + probes = [ + # Allow specifying only one of the signals, e.g. if only one data + # direction exists (or is relevant). + {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, + {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, + ] + options = { + 'baudrate': ['Baud rate', 115200], + 'num_data_bits': ['Data bits', 8], # Valid: 5-9. + 'parity': ['Parity', PARITY_NONE], + 'parity_check': ['Check parity', True], + 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1], + 'bit_order': ['Bit order', LSB_FIRST], + # TODO: Options to invert the signal(s). + } + annotations = [ + ['ASCII', 'Data bytes as ASCII characters'], + ['Decimal', 'Databytes as decimal, integer values'], + ['Hex', 'Data bytes in hex format'], + ['Octal', 'Data bytes as octal numbers'], + ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], + ] + + def putx(self, rxtx, data): + self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data) + + def __init__(self, **kwargs): + self.samplenum = 0 + self.frame_start = [-1, -1] + self.startbit = [-1, -1] + self.cur_data_bit = [0, 0] + self.databyte = [0, 0] + self.stopbit1 = [-1, -1] + self.startsample = [-1, -1] + + # Initial state. + self.state = [WAIT_FOR_START_BIT, WAIT_FOR_START_BIT] + + self.oldbit = [None, None] + + # Set protocol decoder option defaults. + self.baudrate = Decoder.options['baudrate'][1] + self.num_data_bits = Decoder.options['num_data_bits'][1] + self.parity = Decoder.options['parity'][1] + self.check_parity = Decoder.options['parity_check'][1] + self.num_stop_bits = Decoder.options['num_stop_bits'][1] + self.bit_order = Decoder.options['bit_order'][1] + + def start(self, metadata): + self.samplerate = metadata['samplerate'] + self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart') + self.out_ann = self.add(srd.OUTPUT_ANN, 'uart') + + # TODO: Override PD options, if user wants that. + + # The width of one UART bit in number of samples. + self.bit_width = float(self.samplerate) / float(self.baudrate) + + def report(self): + pass + + # Return true if we reached the middle of the desired bit, false otherwise. + def reached_bit(self, rxtx, bitnum): + # bitpos is the samplenumber which is in the middle of the + # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit + # (if used) or the first stop bit, and so on). + bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0) + bitpos += bitnum * self.bit_width + if self.samplenum >= bitpos: + return True + return False + + def reached_bit_last(self, rxtx, bitnum): + bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) + if self.samplenum >= bitpos: + return True + return False + + def wait_for_start_bit(self, rxtx, old_signal, signal): + # The start bit is always 0 (low). As the idle UART (and the stop bit) + # level is 1 (high), the beginning of a start bit is a falling edge. + if not (old_signal == 1 and signal == 0): + return + + # Save the sample number where the start bit begins. + self.frame_start[rxtx] = self.samplenum + + self.state[rxtx] = GET_START_BIT + + def get_start_bit(self, rxtx, signal): + # Skip samples until we're in the middle of the start bit. + if not self.reached_bit(rxtx, 0): + return + + self.startbit[rxtx] = signal + + # The startbit must be 0. If not, we report an error. + if self.startbit[rxtx] != 0: + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + [T_INVALID_START, rxtx, self.startbit[rxtx]]) + # TODO: Abort? Ignore rest of the frame? + + self.cur_data_bit[rxtx] = 0 + self.databyte[rxtx] = 0 + self.startsample[rxtx] = -1 + + self.state[rxtx] = GET_DATA_BITS + + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + [T_START, rxtx, self.startbit[rxtx]]) + self.put(self.frame_start[rxtx], self.samplenum, self.out_ann, + [ANN_ASCII, ['Start bit', 'Start', 'S']]) + + def get_data_bits(self, rxtx, signal): + # Skip samples until we're in the middle of the desired data bit. + if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): + return + + # Save the sample number where the data byte starts. + if self.startsample[rxtx] == -1: + self.startsample[rxtx] = self.samplenum + + # Get the next data bit in LSB-first or MSB-first fashion. + if self.bit_order == LSB_FIRST: + self.databyte[rxtx] >>= 1 + self.databyte[rxtx] |= (signal << (self.num_data_bits - 1)) + elif self.bit_order == MSB_FIRST: + self.databyte[rxtx] <<= 1 + self.databyte[rxtx] |= (signal << 0) + else: + raise Exception('Invalid bit order value: %d', self.bit_order) + + # Return here, unless we already received all data bits. + if self.cur_data_bit[rxtx] < self.num_data_bits - 1: # TODO? Off-by-one? + self.cur_data_bit[rxtx] += 1 + return + + self.state[rxtx] = GET_PARITY_BIT + + self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto, + [T_DATA, rxtx, self.databyte[rxtx]]) + + s = 'RX: ' if (rxtx == RX) else 'TX: ' + self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]]) + self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]]) + self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]), + s + hex(self.databyte[rxtx])[2:]]]) + self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]), + s + oct(self.databyte[rxtx])[2:]]]) + self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]), + s + bin(self.databyte[rxtx])[2:]]]) + + def get_parity_bit(self, rxtx, signal): + # If no parity is used/configured, skip to the next state immediately. + if self.parity == PARITY_NONE: + self.state[rxtx] = GET_STOP_BITS + return + + # Skip samples until we're in the middle of the parity bit. + if not self.reached_bit(rxtx, self.num_data_bits + 1): + return + + self.paritybit[rxtx] = signal + + self.state[rxtx] = GET_STOP_BITS + + if parity_ok(self.parity[rxtx], self.paritybit[rxtx], + self.databyte[rxtx], self.num_data_bits): + # TODO: Fix range. + self.put(self.samplenum, self.samplenum, self.out_proto, + [T_PARITY_BIT, rxtx, self.paritybit[rxtx]]) + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Parity bit', 'Parity', 'P']]) + else: + # TODO: Fix range. + # TODO: Return expected/actual parity values. + self.put(self.samplenum, self.samplenum, self.out_proto, + [T_PARITY_ERROR, rxtx, (0, 1)]) # FIXME: Dummy tuple... + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Parity error', 'Parity err', 'PE']]) + + # TODO: Currently only supports 1 stop bit. + def get_stop_bits(self, rxtx, signal): + # Skip samples until we're in the middle of the stop bit(s). + skip_parity = 0 if self.parity == PARITY_NONE else 1 + if not self.reached_bit(rxtx, self.num_data_bits + 1 + skip_parity): + return + + self.stopbit1[rxtx] = signal + + # Stop bits must be 1. If not, we report an error. + if self.stopbit1[rxtx] != 1: + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + [T_INVALID_STOP, rxtx, self.stopbit1[rxtx]]) + # TODO: Abort? Ignore the frame? Other? + + self.state[rxtx] = WAIT_FOR_START_BIT + + # TODO: Fix range. + self.put(self.samplenum, self.samplenum, self.out_proto, + [T_STOP, rxtx, self.stopbit1[rxtx]]) + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Stop bit', 'Stop', 'P']]) + + def decode(self, ss, es, data): # TODO + for (samplenum, (rx, tx)) in data: + + # TODO: Start counting at 0 or 1? Increase before or after? + self.samplenum += 1 + + # First sample: Save RX/TX value. + if self.oldbit[RX] == None: + self.oldbit[RX] = rx + continue + if self.oldbit[TX] == None: + self.oldbit[TX] = tx + continue + + # State machine. + for rxtx in (RX, TX): + signal = rx if (rxtx == RX) else tx + + if self.state[rxtx] == WAIT_FOR_START_BIT: + self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) + elif self.state[rxtx] == GET_START_BIT: + self.get_start_bit(rxtx, signal) + elif self.state[rxtx] == GET_DATA_BITS: + self.get_data_bits(rxtx, signal) + elif self.state[rxtx] == GET_PARITY_BIT: + self.get_parity_bit(rxtx, signal) + elif self.state[rxtx] == GET_STOP_BITS: + self.get_stop_bits(rxtx, signal) + else: + raise Exception('Invalid state: %s' % self.state[rxtx]) + + # Save current RX/TX values for the next round. + self.oldbit[rxtx] = signal + |