summaryrefslogtreecommitdiff
path: root/decoders/uart/pd.py
diff options
context:
space:
mode:
Diffstat (limited to 'decoders/uart/pd.py')
-rw-r--r--decoders/uart/pd.py304
1 files changed, 304 insertions, 0 deletions
diff --git a/decoders/uart/pd.py b/decoders/uart/pd.py
new file mode 100644
index 0000000..24551da
--- /dev/null
+++ b/decoders/uart/pd.py
@@ -0,0 +1,304 @@
+##
+## This file is part of the sigrok project.
+##
+## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, write to the Free Software
+## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+##
+
+# UART protocol decoder
+
+import sigrokdecode as srd
+
+# Used for differentiating between the two data directions.
+RX = 0
+TX = 1
+
+# Annotation feed formats
+ANN_ASCII = 0
+ANN_DEC = 1
+ANN_HEX = 2
+ANN_OCT = 3
+ANN_BITS = 4
+
+# Given a parity type to check (odd, even, zero, one), the value of the
+# parity bit, the value of the data, and the length of the data (5-9 bits,
+# usually 8 bits) return True if the parity is correct, False otherwise.
+# 'none' is _not_ allowed as value for 'parity_type'.
+def parity_ok(parity_type, parity_bit, data, num_data_bits):
+
+ # Handle easy cases first (parity bit is always 1 or 0).
+ if parity_type == 'zero':
+ return parity_bit == 0
+ elif parity_type == 'one':
+ return parity_bit == 1
+
+ # Count number of 1 (high) bits in the data (and the parity bit itself!).
+ ones = bin(data).count('1') + parity_bit
+
+ # Check for odd/even parity.
+ if parity_type == 'odd':
+ return (ones % 2) == 1
+ elif parity_type == 'even':
+ return (ones % 2) == 0
+ else:
+ raise Exception('Invalid parity type: %d' % parity_type)
+
+class Decoder(srd.Decoder):
+ api_version = 1
+ id = 'uart'
+ name = 'UART'
+ longname = 'Universal Asynchronous Receiver/Transmitter'
+ desc = 'Asynchronous, serial bus.'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = ['uart']
+ probes = [
+ # Allow specifying only one of the signals, e.g. if only one data
+ # direction exists (or is relevant).
+ {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
+ {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
+ ]
+ optional_probes = []
+ options = {
+ 'baudrate': ['Baud rate', 115200],
+ 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
+ 'parity_type': ['Parity type', 'none'],
+ 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
+ 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
+ 'bit_order': ['Bit order', 'lsb-first'],
+ # TODO: Options to invert the signal(s).
+ }
+ annotations = [
+ ['ASCII', 'Data bytes as ASCII characters'],
+ ['Decimal', 'Databytes as decimal, integer values'],
+ ['Hex', 'Data bytes in hex format'],
+ ['Octal', 'Data bytes as octal numbers'],
+ ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
+ ]
+
+ def putx(self, rxtx, data):
+ self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data)
+
+ def __init__(self, **kwargs):
+ self.samplenum = 0
+ self.frame_start = [-1, -1]
+ self.startbit = [-1, -1]
+ self.cur_data_bit = [0, 0]
+ self.databyte = [0, 0]
+ self.paritybit = [-1, -1]
+ self.stopbit1 = [-1, -1]
+ self.startsample = [-1, -1]
+ self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
+ self.oldbit = [None, None]
+ self.oldpins = None
+
+ def start(self, metadata):
+ self.samplerate = metadata['samplerate']
+ self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
+ self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
+
+ # The width of one UART bit in number of samples.
+ self.bit_width = \
+ float(self.samplerate) / float(self.options['baudrate'])
+
+ def report(self):
+ pass
+
+ # Return true if we reached the middle of the desired bit, false otherwise.
+ def reached_bit(self, rxtx, bitnum):
+ # bitpos is the samplenumber which is in the middle of the
+ # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
+ # (if used) or the first stop bit, and so on).
+ bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
+ bitpos += bitnum * self.bit_width
+ if self.samplenum >= bitpos:
+ return True
+ return False
+
+ def reached_bit_last(self, rxtx, bitnum):
+ bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
+ if self.samplenum >= bitpos:
+ return True
+ return False
+
+ def wait_for_start_bit(self, rxtx, old_signal, signal):
+ # The start bit is always 0 (low). As the idle UART (and the stop bit)
+ # level is 1 (high), the beginning of a start bit is a falling edge.
+ if not (old_signal == 1 and signal == 0):
+ return
+
+ # Save the sample number where the start bit begins.
+ self.frame_start[rxtx] = self.samplenum
+
+ self.state[rxtx] = 'GET START BIT'
+
+ def get_start_bit(self, rxtx, signal):
+ # Skip samples until we're in the middle of the start bit.
+ if not self.reached_bit(rxtx, 0):
+ return
+
+ self.startbit[rxtx] = signal
+
+ # The startbit must be 0. If not, we report an error.
+ if self.startbit[rxtx] != 0:
+ self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
+ ['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
+ # TODO: Abort? Ignore rest of the frame?
+
+ self.cur_data_bit[rxtx] = 0
+ self.databyte[rxtx] = 0
+ self.startsample[rxtx] = -1
+
+ self.state[rxtx] = 'GET DATA BITS'
+
+ self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
+ ['STARTBIT', rxtx, self.startbit[rxtx]])
+ self.put(self.frame_start[rxtx], self.samplenum, self.out_ann,
+ [ANN_ASCII, ['Start bit', 'Start', 'S']])
+
+ def get_data_bits(self, rxtx, signal):
+ # Skip samples until we're in the middle of the desired data bit.
+ if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
+ return
+
+ # Save the sample number where the data byte starts.
+ if self.startsample[rxtx] == -1:
+ self.startsample[rxtx] = self.samplenum
+
+ # Get the next data bit in LSB-first or MSB-first fashion.
+ if self.options['bit_order'] == 'lsb-first':
+ self.databyte[rxtx] >>= 1
+ self.databyte[rxtx] |= \
+ (signal << (self.options['num_data_bits'] - 1))
+ elif self.options['bit_order'] == 'msb-first':
+ self.databyte[rxtx] <<= 1
+ self.databyte[rxtx] |= (signal << 0)
+ else:
+ raise Exception('Invalid bit order value: %s',
+ self.options['bit_order'])
+
+ # Return here, unless we already received all data bits.
+ # TODO? Off-by-one?
+ if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
+ self.cur_data_bit[rxtx] += 1
+ return
+
+ self.state[rxtx] = 'GET PARITY BIT'
+
+ self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto,
+ ['DATA', rxtx, self.databyte[rxtx]])
+
+ s = 'RX: ' if (rxtx == RX) else 'TX: '
+ self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]])
+ self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]])
+ self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]),
+ s + hex(self.databyte[rxtx])[2:]]])
+ self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]),
+ s + oct(self.databyte[rxtx])[2:]]])
+ self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]),
+ s + bin(self.databyte[rxtx])[2:]]])
+
+ def get_parity_bit(self, rxtx, signal):
+ # If no parity is used/configured, skip to the next state immediately.
+ if self.options['parity_type'] == 'none':
+ self.state[rxtx] = 'GET STOP BITS'
+ return
+
+ # Skip samples until we're in the middle of the parity bit.
+ if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
+ return
+
+ self.paritybit[rxtx] = signal
+
+ self.state[rxtx] = 'GET STOP BITS'
+
+ if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
+ self.databyte[rxtx], self.options['num_data_bits']):
+ # TODO: Fix range.
+ self.put(self.samplenum, self.samplenum, self.out_proto,
+ ['PARITYBIT', rxtx, self.paritybit[rxtx]])
+ self.put(self.samplenum, self.samplenum, self.out_ann,
+ [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
+ else:
+ # TODO: Fix range.
+ # TODO: Return expected/actual parity values.
+ self.put(self.samplenum, self.samplenum, self.out_proto,
+ ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
+ self.put(self.samplenum, self.samplenum, self.out_ann,
+ [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
+
+ # TODO: Currently only supports 1 stop bit.
+ def get_stop_bits(self, rxtx, signal):
+ # Skip samples until we're in the middle of the stop bit(s).
+ skip_parity = 0 if self.options['parity_type'] == 'none' else 1
+ b = self.options['num_data_bits'] + 1 + skip_parity
+ if not self.reached_bit(rxtx, b):
+ return
+
+ self.stopbit1[rxtx] = signal
+
+ # Stop bits must be 1. If not, we report an error.
+ if self.stopbit1[rxtx] != 1:
+ self.put(self.frame_start[rxtx], self.samplenum, self.out_proto,
+ ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
+ # TODO: Abort? Ignore the frame? Other?
+
+ self.state[rxtx] = 'WAIT FOR START BIT'
+
+ # TODO: Fix range.
+ self.put(self.samplenum, self.samplenum, self.out_proto,
+ ['STOPBIT', rxtx, self.stopbit1[rxtx]])
+ self.put(self.samplenum, self.samplenum, self.out_ann,
+ [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
+
+ def decode(self, ss, es, data):
+ # TODO: Either RX or TX could be omitted (optional probe).
+ for (self.samplenum, pins) in data:
+
+ # Note: Ignoring identical samples here for performance reasons
+ # is not possible for this PD, at least not in the current state.
+ # if self.oldpins == pins:
+ # continue
+ self.oldpins, (rx, tx) = pins, pins
+
+ # First sample: Save RX/TX value.
+ if self.oldbit[RX] == None:
+ self.oldbit[RX] = rx
+ continue
+ if self.oldbit[TX] == None:
+ self.oldbit[TX] = tx
+ continue
+
+ # State machine.
+ for rxtx in (RX, TX):
+ signal = rx if (rxtx == RX) else tx
+
+ if self.state[rxtx] == 'WAIT FOR START BIT':
+ self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
+ elif self.state[rxtx] == 'GET START BIT':
+ self.get_start_bit(rxtx, signal)
+ elif self.state[rxtx] == 'GET DATA BITS':
+ self.get_data_bits(rxtx, signal)
+ elif self.state[rxtx] == 'GET PARITY BIT':
+ self.get_parity_bit(rxtx, signal)
+ elif self.state[rxtx] == 'GET STOP BITS':
+ self.get_stop_bits(rxtx, signal)
+ else:
+ raise Exception('Invalid state: %d' % self.state[rxtx])
+
+ # Save current RX/TX values for the next round.
+ self.oldbit[rxtx] = signal
+