diff options
Diffstat (limited to 'decoders/uart/pd.py')
-rw-r--r-- | decoders/uart/pd.py | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/decoders/uart/pd.py b/decoders/uart/pd.py new file mode 100644 index 0000000..24551da --- /dev/null +++ b/decoders/uart/pd.py @@ -0,0 +1,304 @@ +## +## This file is part of the sigrok project. +## +## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de> +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, write to the Free Software +## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA +## + +# UART protocol decoder + +import sigrokdecode as srd + +# Used for differentiating between the two data directions. +RX = 0 +TX = 1 + +# Annotation feed formats +ANN_ASCII = 0 +ANN_DEC = 1 +ANN_HEX = 2 +ANN_OCT = 3 +ANN_BITS = 4 + +# Given a parity type to check (odd, even, zero, one), the value of the +# parity bit, the value of the data, and the length of the data (5-9 bits, +# usually 8 bits) return True if the parity is correct, False otherwise. +# 'none' is _not_ allowed as value for 'parity_type'. +def parity_ok(parity_type, parity_bit, data, num_data_bits): + + # Handle easy cases first (parity bit is always 1 or 0). + if parity_type == 'zero': + return parity_bit == 0 + elif parity_type == 'one': + return parity_bit == 1 + + # Count number of 1 (high) bits in the data (and the parity bit itself!). + ones = bin(data).count('1') + parity_bit + + # Check for odd/even parity. + if parity_type == 'odd': + return (ones % 2) == 1 + elif parity_type == 'even': + return (ones % 2) == 0 + else: + raise Exception('Invalid parity type: %d' % parity_type) + +class Decoder(srd.Decoder): + api_version = 1 + id = 'uart' + name = 'UART' + longname = 'Universal Asynchronous Receiver/Transmitter' + desc = 'Asynchronous, serial bus.' + license = 'gplv2+' + inputs = ['logic'] + outputs = ['uart'] + probes = [ + # Allow specifying only one of the signals, e.g. if only one data + # direction exists (or is relevant). + {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, + {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, + ] + optional_probes = [] + options = { + 'baudrate': ['Baud rate', 115200], + 'num_data_bits': ['Data bits', 8], # Valid: 5-9. + 'parity_type': ['Parity type', 'none'], + 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported? + 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5. + 'bit_order': ['Bit order', 'lsb-first'], + # TODO: Options to invert the signal(s). + } + annotations = [ + ['ASCII', 'Data bytes as ASCII characters'], + ['Decimal', 'Databytes as decimal, integer values'], + ['Hex', 'Data bytes in hex format'], + ['Octal', 'Data bytes as octal numbers'], + ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], + ] + + def putx(self, rxtx, data): + self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data) + + def __init__(self, **kwargs): + self.samplenum = 0 + self.frame_start = [-1, -1] + self.startbit = [-1, -1] + self.cur_data_bit = [0, 0] + self.databyte = [0, 0] + self.paritybit = [-1, -1] + self.stopbit1 = [-1, -1] + self.startsample = [-1, -1] + self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT'] + self.oldbit = [None, None] + self.oldpins = None + + def start(self, metadata): + self.samplerate = metadata['samplerate'] + self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart') + self.out_ann = self.add(srd.OUTPUT_ANN, 'uart') + + # The width of one UART bit in number of samples. + self.bit_width = \ + float(self.samplerate) / float(self.options['baudrate']) + + def report(self): + pass + + # Return true if we reached the middle of the desired bit, false otherwise. + def reached_bit(self, rxtx, bitnum): + # bitpos is the samplenumber which is in the middle of the + # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit + # (if used) or the first stop bit, and so on). + bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0) + bitpos += bitnum * self.bit_width + if self.samplenum >= bitpos: + return True + return False + + def reached_bit_last(self, rxtx, bitnum): + bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) + if self.samplenum >= bitpos: + return True + return False + + def wait_for_start_bit(self, rxtx, old_signal, signal): + # The start bit is always 0 (low). As the idle UART (and the stop bit) + # level is 1 (high), the beginning of a start bit is a falling edge. + if not (old_signal == 1 and signal == 0): + return + + # Save the sample number where the start bit begins. + self.frame_start[rxtx] = self.samplenum + + self.state[rxtx] = 'GET START BIT' + + def get_start_bit(self, rxtx, signal): + # Skip samples until we're in the middle of the start bit. + if not self.reached_bit(rxtx, 0): + return + + self.startbit[rxtx] = signal + + # The startbit must be 0. If not, we report an error. + if self.startbit[rxtx] != 0: + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + ['INVALID STARTBIT', rxtx, self.startbit[rxtx]]) + # TODO: Abort? Ignore rest of the frame? + + self.cur_data_bit[rxtx] = 0 + self.databyte[rxtx] = 0 + self.startsample[rxtx] = -1 + + self.state[rxtx] = 'GET DATA BITS' + + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + ['STARTBIT', rxtx, self.startbit[rxtx]]) + self.put(self.frame_start[rxtx], self.samplenum, self.out_ann, + [ANN_ASCII, ['Start bit', 'Start', 'S']]) + + def get_data_bits(self, rxtx, signal): + # Skip samples until we're in the middle of the desired data bit. + if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): + return + + # Save the sample number where the data byte starts. + if self.startsample[rxtx] == -1: + self.startsample[rxtx] = self.samplenum + + # Get the next data bit in LSB-first or MSB-first fashion. + if self.options['bit_order'] == 'lsb-first': + self.databyte[rxtx] >>= 1 + self.databyte[rxtx] |= \ + (signal << (self.options['num_data_bits'] - 1)) + elif self.options['bit_order'] == 'msb-first': + self.databyte[rxtx] <<= 1 + self.databyte[rxtx] |= (signal << 0) + else: + raise Exception('Invalid bit order value: %s', + self.options['bit_order']) + + # Return here, unless we already received all data bits. + # TODO? Off-by-one? + if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1: + self.cur_data_bit[rxtx] += 1 + return + + self.state[rxtx] = 'GET PARITY BIT' + + self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto, + ['DATA', rxtx, self.databyte[rxtx]]) + + s = 'RX: ' if (rxtx == RX) else 'TX: ' + self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]]) + self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]]) + self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]), + s + hex(self.databyte[rxtx])[2:]]]) + self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]), + s + oct(self.databyte[rxtx])[2:]]]) + self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]), + s + bin(self.databyte[rxtx])[2:]]]) + + def get_parity_bit(self, rxtx, signal): + # If no parity is used/configured, skip to the next state immediately. + if self.options['parity_type'] == 'none': + self.state[rxtx] = 'GET STOP BITS' + return + + # Skip samples until we're in the middle of the parity bit. + if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1): + return + + self.paritybit[rxtx] = signal + + self.state[rxtx] = 'GET STOP BITS' + + if parity_ok(self.options['parity_type'], self.paritybit[rxtx], + self.databyte[rxtx], self.options['num_data_bits']): + # TODO: Fix range. + self.put(self.samplenum, self.samplenum, self.out_proto, + ['PARITYBIT', rxtx, self.paritybit[rxtx]]) + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Parity bit', 'Parity', 'P']]) + else: + # TODO: Fix range. + # TODO: Return expected/actual parity values. + self.put(self.samplenum, self.samplenum, self.out_proto, + ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple... + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Parity error', 'Parity err', 'PE']]) + + # TODO: Currently only supports 1 stop bit. + def get_stop_bits(self, rxtx, signal): + # Skip samples until we're in the middle of the stop bit(s). + skip_parity = 0 if self.options['parity_type'] == 'none' else 1 + b = self.options['num_data_bits'] + 1 + skip_parity + if not self.reached_bit(rxtx, b): + return + + self.stopbit1[rxtx] = signal + + # Stop bits must be 1. If not, we report an error. + if self.stopbit1[rxtx] != 1: + self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, + ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]]) + # TODO: Abort? Ignore the frame? Other? + + self.state[rxtx] = 'WAIT FOR START BIT' + + # TODO: Fix range. + self.put(self.samplenum, self.samplenum, self.out_proto, + ['STOPBIT', rxtx, self.stopbit1[rxtx]]) + self.put(self.samplenum, self.samplenum, self.out_ann, + [ANN_ASCII, ['Stop bit', 'Stop', 'P']]) + + def decode(self, ss, es, data): + # TODO: Either RX or TX could be omitted (optional probe). + for (self.samplenum, pins) in data: + + # Note: Ignoring identical samples here for performance reasons + # is not possible for this PD, at least not in the current state. + # if self.oldpins == pins: + # continue + self.oldpins, (rx, tx) = pins, pins + + # First sample: Save RX/TX value. + if self.oldbit[RX] == None: + self.oldbit[RX] = rx + continue + if self.oldbit[TX] == None: + self.oldbit[TX] = tx + continue + + # State machine. + for rxtx in (RX, TX): + signal = rx if (rxtx == RX) else tx + + if self.state[rxtx] == 'WAIT FOR START BIT': + self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) + elif self.state[rxtx] == 'GET START BIT': + self.get_start_bit(rxtx, signal) + elif self.state[rxtx] == 'GET DATA BITS': + self.get_data_bits(rxtx, signal) + elif self.state[rxtx] == 'GET PARITY BIT': + self.get_parity_bit(rxtx, signal) + elif self.state[rxtx] == 'GET STOP BITS': + self.get_stop_bits(rxtx, signal) + else: + raise Exception('Invalid state: %d' % self.state[rxtx]) + + # Save current RX/TX values for the next round. + self.oldbit[rxtx] = signal + |