diff options
author | Uwe Hermann <uwe@hermann-uwe.de> | 2012-11-21 22:43:02 +0100 |
---|---|---|
committer | Uwe Hermann <uwe@hermann-uwe.de> | 2012-11-24 20:21:19 +0100 |
commit | 24c74fd30fb161837c5f8b01baf3c0fe2dfa4ed5 (patch) | |
tree | 43d0c24c6a18e824d9d66a390bad9cff3aa081af /decoders/uart/uart.py | |
parent | 23f999aa996e54cd73cb54d5e254d1445d65847d (diff) | |
download | libsigrokdecode-24c74fd30fb161837c5f8b01baf3c0fe2dfa4ed5.tar.gz libsigrokdecode-24c74fd30fb161837c5f8b01baf3c0fe2dfa4ed5.zip |
All PDs: Name the files pd.py consistently.
The Python module name is determined by the directory name (e.g. dcf77),
the *.py file names in that directory don't matter and can be kept
consistent.
Diffstat (limited to 'decoders/uart/uart.py')
-rw-r--r-- | decoders/uart/uart.py | 304 |
1 files changed, 0 insertions, 304 deletions
diff --git a/decoders/uart/uart.py b/decoders/uart/uart.py deleted file mode 100644 index 24551da..0000000 --- a/decoders/uart/uart.py +++ /dev/null @@ -1,304 +0,0 @@ -## -## This file is part of the sigrok project. -## -## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de> -## -## This program is free software; you can redistribute it and/or modify -## it under the terms of the GNU General Public License as published by -## the Free Software Foundation; either version 2 of the License, or -## (at your option) any later version. -## -## This program is distributed in the hope that it will be useful, -## but WITHOUT ANY WARRANTY; without even the implied warranty of -## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -## GNU General Public License for more details. -## -## You should have received a copy of the GNU General Public License -## along with this program; if not, write to the Free Software -## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -## - -# UART protocol decoder - -import sigrokdecode as srd - -# Used for differentiating between the two data directions. -RX = 0 -TX = 1 - -# Annotation feed formats -ANN_ASCII = 0 -ANN_DEC = 1 -ANN_HEX = 2 -ANN_OCT = 3 -ANN_BITS = 4 - -# Given a parity type to check (odd, even, zero, one), the value of the -# parity bit, the value of the data, and the length of the data (5-9 bits, -# usually 8 bits) return True if the parity is correct, False otherwise. -# 'none' is _not_ allowed as value for 'parity_type'. -def parity_ok(parity_type, parity_bit, data, num_data_bits): - - # Handle easy cases first (parity bit is always 1 or 0). - if parity_type == 'zero': - return parity_bit == 0 - elif parity_type == 'one': - return parity_bit == 1 - - # Count number of 1 (high) bits in the data (and the parity bit itself!). - ones = bin(data).count('1') + parity_bit - - # Check for odd/even parity. - if parity_type == 'odd': - return (ones % 2) == 1 - elif parity_type == 'even': - return (ones % 2) == 0 - else: - raise Exception('Invalid parity type: %d' % parity_type) - -class Decoder(srd.Decoder): - api_version = 1 - id = 'uart' - name = 'UART' - longname = 'Universal Asynchronous Receiver/Transmitter' - desc = 'Asynchronous, serial bus.' - license = 'gplv2+' - inputs = ['logic'] - outputs = ['uart'] - probes = [ - # Allow specifying only one of the signals, e.g. if only one data - # direction exists (or is relevant). - {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'}, - {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'}, - ] - optional_probes = [] - options = { - 'baudrate': ['Baud rate', 115200], - 'num_data_bits': ['Data bits', 8], # Valid: 5-9. - 'parity_type': ['Parity type', 'none'], - 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported? - 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5. - 'bit_order': ['Bit order', 'lsb-first'], - # TODO: Options to invert the signal(s). - } - annotations = [ - ['ASCII', 'Data bytes as ASCII characters'], - ['Decimal', 'Databytes as decimal, integer values'], - ['Hex', 'Data bytes in hex format'], - ['Octal', 'Data bytes as octal numbers'], - ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'], - ] - - def putx(self, rxtx, data): - self.put(self.startsample[rxtx], self.samplenum - 1, self.out_ann, data) - - def __init__(self, **kwargs): - self.samplenum = 0 - self.frame_start = [-1, -1] - self.startbit = [-1, -1] - self.cur_data_bit = [0, 0] - self.databyte = [0, 0] - self.paritybit = [-1, -1] - self.stopbit1 = [-1, -1] - self.startsample = [-1, -1] - self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT'] - self.oldbit = [None, None] - self.oldpins = None - - def start(self, metadata): - self.samplerate = metadata['samplerate'] - self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart') - self.out_ann = self.add(srd.OUTPUT_ANN, 'uart') - - # The width of one UART bit in number of samples. - self.bit_width = \ - float(self.samplerate) / float(self.options['baudrate']) - - def report(self): - pass - - # Return true if we reached the middle of the desired bit, false otherwise. - def reached_bit(self, rxtx, bitnum): - # bitpos is the samplenumber which is in the middle of the - # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit - # (if used) or the first stop bit, and so on). - bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0) - bitpos += bitnum * self.bit_width - if self.samplenum >= bitpos: - return True - return False - - def reached_bit_last(self, rxtx, bitnum): - bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width) - if self.samplenum >= bitpos: - return True - return False - - def wait_for_start_bit(self, rxtx, old_signal, signal): - # The start bit is always 0 (low). As the idle UART (and the stop bit) - # level is 1 (high), the beginning of a start bit is a falling edge. - if not (old_signal == 1 and signal == 0): - return - - # Save the sample number where the start bit begins. - self.frame_start[rxtx] = self.samplenum - - self.state[rxtx] = 'GET START BIT' - - def get_start_bit(self, rxtx, signal): - # Skip samples until we're in the middle of the start bit. - if not self.reached_bit(rxtx, 0): - return - - self.startbit[rxtx] = signal - - # The startbit must be 0. If not, we report an error. - if self.startbit[rxtx] != 0: - self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, - ['INVALID STARTBIT', rxtx, self.startbit[rxtx]]) - # TODO: Abort? Ignore rest of the frame? - - self.cur_data_bit[rxtx] = 0 - self.databyte[rxtx] = 0 - self.startsample[rxtx] = -1 - - self.state[rxtx] = 'GET DATA BITS' - - self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, - ['STARTBIT', rxtx, self.startbit[rxtx]]) - self.put(self.frame_start[rxtx], self.samplenum, self.out_ann, - [ANN_ASCII, ['Start bit', 'Start', 'S']]) - - def get_data_bits(self, rxtx, signal): - # Skip samples until we're in the middle of the desired data bit. - if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1): - return - - # Save the sample number where the data byte starts. - if self.startsample[rxtx] == -1: - self.startsample[rxtx] = self.samplenum - - # Get the next data bit in LSB-first or MSB-first fashion. - if self.options['bit_order'] == 'lsb-first': - self.databyte[rxtx] >>= 1 - self.databyte[rxtx] |= \ - (signal << (self.options['num_data_bits'] - 1)) - elif self.options['bit_order'] == 'msb-first': - self.databyte[rxtx] <<= 1 - self.databyte[rxtx] |= (signal << 0) - else: - raise Exception('Invalid bit order value: %s', - self.options['bit_order']) - - # Return here, unless we already received all data bits. - # TODO? Off-by-one? - if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1: - self.cur_data_bit[rxtx] += 1 - return - - self.state[rxtx] = 'GET PARITY BIT' - - self.put(self.startsample[rxtx], self.samplenum - 1, self.out_proto, - ['DATA', rxtx, self.databyte[rxtx]]) - - s = 'RX: ' if (rxtx == RX) else 'TX: ' - self.putx(rxtx, [ANN_ASCII, [s + chr(self.databyte[rxtx])]]) - self.putx(rxtx, [ANN_DEC, [s + str(self.databyte[rxtx])]]) - self.putx(rxtx, [ANN_HEX, [s + hex(self.databyte[rxtx]), - s + hex(self.databyte[rxtx])[2:]]]) - self.putx(rxtx, [ANN_OCT, [s + oct(self.databyte[rxtx]), - s + oct(self.databyte[rxtx])[2:]]]) - self.putx(rxtx, [ANN_BITS, [s + bin(self.databyte[rxtx]), - s + bin(self.databyte[rxtx])[2:]]]) - - def get_parity_bit(self, rxtx, signal): - # If no parity is used/configured, skip to the next state immediately. - if self.options['parity_type'] == 'none': - self.state[rxtx] = 'GET STOP BITS' - return - - # Skip samples until we're in the middle of the parity bit. - if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1): - return - - self.paritybit[rxtx] = signal - - self.state[rxtx] = 'GET STOP BITS' - - if parity_ok(self.options['parity_type'], self.paritybit[rxtx], - self.databyte[rxtx], self.options['num_data_bits']): - # TODO: Fix range. - self.put(self.samplenum, self.samplenum, self.out_proto, - ['PARITYBIT', rxtx, self.paritybit[rxtx]]) - self.put(self.samplenum, self.samplenum, self.out_ann, - [ANN_ASCII, ['Parity bit', 'Parity', 'P']]) - else: - # TODO: Fix range. - # TODO: Return expected/actual parity values. - self.put(self.samplenum, self.samplenum, self.out_proto, - ['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple... - self.put(self.samplenum, self.samplenum, self.out_ann, - [ANN_ASCII, ['Parity error', 'Parity err', 'PE']]) - - # TODO: Currently only supports 1 stop bit. - def get_stop_bits(self, rxtx, signal): - # Skip samples until we're in the middle of the stop bit(s). - skip_parity = 0 if self.options['parity_type'] == 'none' else 1 - b = self.options['num_data_bits'] + 1 + skip_parity - if not self.reached_bit(rxtx, b): - return - - self.stopbit1[rxtx] = signal - - # Stop bits must be 1. If not, we report an error. - if self.stopbit1[rxtx] != 1: - self.put(self.frame_start[rxtx], self.samplenum, self.out_proto, - ['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]]) - # TODO: Abort? Ignore the frame? Other? - - self.state[rxtx] = 'WAIT FOR START BIT' - - # TODO: Fix range. - self.put(self.samplenum, self.samplenum, self.out_proto, - ['STOPBIT', rxtx, self.stopbit1[rxtx]]) - self.put(self.samplenum, self.samplenum, self.out_ann, - [ANN_ASCII, ['Stop bit', 'Stop', 'P']]) - - def decode(self, ss, es, data): - # TODO: Either RX or TX could be omitted (optional probe). - for (self.samplenum, pins) in data: - - # Note: Ignoring identical samples here for performance reasons - # is not possible for this PD, at least not in the current state. - # if self.oldpins == pins: - # continue - self.oldpins, (rx, tx) = pins, pins - - # First sample: Save RX/TX value. - if self.oldbit[RX] == None: - self.oldbit[RX] = rx - continue - if self.oldbit[TX] == None: - self.oldbit[TX] = tx - continue - - # State machine. - for rxtx in (RX, TX): - signal = rx if (rxtx == RX) else tx - - if self.state[rxtx] == 'WAIT FOR START BIT': - self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal) - elif self.state[rxtx] == 'GET START BIT': - self.get_start_bit(rxtx, signal) - elif self.state[rxtx] == 'GET DATA BITS': - self.get_data_bits(rxtx, signal) - elif self.state[rxtx] == 'GET PARITY BIT': - self.get_parity_bit(rxtx, signal) - elif self.state[rxtx] == 'GET STOP BITS': - self.get_stop_bits(rxtx, signal) - else: - raise Exception('Invalid state: %d' % self.state[rxtx]) - - # Save current RX/TX values for the next round. - self.oldbit[rxtx] = signal - |